Miquel Feixas
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miquel Feixas.
IEEE Transactions on Visualization and Computer Graphics | 2006
Ivan Viola; Miquel Feixas; Mateu Sbert; M.E. Groller
This paper introduces a concept for automatic focusing on features within a volumetric data set. The user selects a focus, i.e., object of interest, from a set of pre-defined features. Our system automatically determines the most expressive view on this feature. A characteristic viewpoint is estimated by a novel information-theoretic framework which is based on the mutual information measure. Viewpoints change smoothly by switching the focus from one feature to another one. This mechanism is controlled by changes in the importance distribution among features in the volume. The highest importance is assigned to the feature in focus. Apart from viewpoint selection, the focusing mechanism also steers visual emphasis by assigning a visually more prominent representation. To allow a clear view on features that are normally occluded by other parts of the volume, the focusing for example incorporates cut-away views
tests and proofs | 2009
Miquel Feixas; Mateu Sbert; Francisco González
Viewpoint selection is an emerging area in computer graphics with applications in fields such as scene exploration, image-based modeling, and volume visualization. In particular, best view selection algorithms are used to obtain the minimum number of views (or images) in order to understand or model an object or scene better. In this article, we present a unified framework for viewpoint selection and mesh saliency based on the definition of an information channel between a set of viewpoints (input) and the set of polygons of an object (output). The mutual information of this channel is shown to be a powerful tool to deal with viewpoint selection, viewpoint stability, object exploration and viewpoint-based saliency. In addition, viewpoint mutual information is extended using saliency as an importance factor, showing how perceptual criteria can be incorporated to our method. Although we use a sphere of viewpoints around an object, our framework is also valid for any set of viewpoints in a closed scene. A number of experiments demonstrate the robustness of our approach and the good behavior of the proposed measures.
Computer Graphics Forum | 2003
Pere-Pau Vázquez; Miquel Feixas; Mateu Sbert; Wolfgang Heidrich
In the last decade a new family of methods, namely Image‐Based Rendering, has appeared. These techniques rely on the use of precomputed images to totally or partially substitute the geometric representation of the scene. This allows to obtain realistic renderings even with modest resources. The main problem is the amount of data needed, mainly due to the high redundancy and the high computational cost of capture. In this paper we present a new method to automatically determine the correct camera placement positions in order to obtain a minimal set of views for Image‐Based Rendering. The input is a 3D polyhedral model including textures and the output is a set of views that sample all visible polygons at an appropriate rate. The viewpoints should cover all visible polygons with an adequate quality, so that we sample the polygons at sufficient rate. This permits to avoid the excessive redundancy of the data existing in several other approaches. We also reduce the cost of the capturing process, as the number of actually computed reference views decreases. The localization of interesting viewpoints is performed with the aid of an information theory‐based measure, dubbed viewpoint entropy. This measure is used to determine the amount of information seen from a viewpoint. Next we develop a greedy algorithm to minimize the number of images needed to represent a scene. In contrast to other approaches, our system uses a special preprocess for textures to avoid artifacts appearing in partially occluded textured polygons. Therefore no visible detail of these images is lost.
IEEE Computer Graphics and Applications | 2008
Jaume Rigau; Miquel Feixas; Mateu Sbert
The Birkhoff aesthetic measure of an object is the ratio between order and complexity. Informational aesthetics describes the interpretation of this measure from an information-theoretic perspective. From these ideas, the authors define a set of ratios based on information theory and Kolmogorov complexity that can help to quantify the aesthetic experience.
eurographics | 2005
Mateu Sbert; Dimitri Plemenos; Miquel Feixas; Francisco González
Several methods that use the notion of viewpoint quality have been recently introduced in different areas of computer graphics, such as scene understanding, exploration of virtual worlds, radiosity and global illumination, image-based rendering and modelling. In this paper, we analyze the behavior of three different viewpoint quality measures. The first one is a heuristic measure, the second one is the viewpoint entropy, and the third one is a new measure based on the Kullback-Leibler distance between the projected and actual distributions of the areas of the polygons in the scene. In addition, this paper reviews different applications and introduces a new algorithm using the Kullback-Leibler distance for the selection of a representative set of n views. Our method is based in selecting the view that minimizes the Kullback-Leibler distance between the mixture of the distributions of all selected views and the actual area distribution.
Computer Graphics Forum | 1999
Miquel Feixas; Esteve del Acebo; Philippe Bekaert; Mateu Sbert
In this paper we present a new framework for the analysis of scene visibility and radiosity complexity. We introduce a number of complexity measures from information theory quantifying how difficult it is to compute with accuracy the visibility and radiosity in a scene. We define the continuous mutual information as a complexity measure of a scene, independent of whatever discretisation, and discrete mutual information as the complexity of a discretised scene. Mutual information can be understood as the degree of correlation or dependence between all the points or patches of a scene. Thus, low complexity corresponds to low correlation and vice versa. Experiments illustrating that the best mesh of a given scene among a number of alternatives corresponds to the one with the highest discrete mutual information, indicate the feasibility of the approach. Unlike continuous mutual information, which is very cheap to compute, the computation of discrete mutual information can however be quite demanding. We will develop cheap complexity measure estimates and derive practical algorithms from this framework in future work.
IEEE Transactions on Visualization and Computer Graphics | 2011
Marc Ruiz; Anton Bardera; Imma Boada; Ivan Viola; Miquel Feixas; Mateu Sbert
In this paper we present a framework to define transfer functions from a target distribution provided by the user. A target distribution can reflect the data importance, or highly relevant data value interval, or spatial segmentation. Our approach is based on a communication channel between a set of viewpoints and a set of bins of a volume data set, and it supports 1D as well as 2D transfer functions including the gradient information. The transfer functions are obtained by minimizing the informational divergence or Kullback-Leibler distance between the visibility distribution captured by the viewpoints and a target distribution selected by the user. The use of the derivative of the informational divergence allows for a fast optimization process. Different target distributions for 1D and 2D transfer functions are analyzed together with importance-driven and view-based techniques.
Computers & Graphics | 2009
Christian Wallraven; Roland W. Fleming; Douglas W. Cunningham; Jaume Rigau; Miquel Feixas; Mateu Sbert
The categorization of art (paintings, literature) into distinct styles such as Expressionism, or Surrealism has had a profound influence on how art is presented, marketed, analyzed, and historicized. Here, we present results from human and computational experiments with the goal of determining to which degree such categories can be explained by simple, low-level appearance information in the image. Following experimental methods from perceptual psychology on category formation, naive, non-expert participants were first asked to sort printouts of artworks from different art periods into categories. Converting these data into similarity data and running a multi-dimensional scaling (MDS) analysis, we found distinct categories which corresponded sometimes surprisingly well to canonical art periods. The result was cross-validated on two complementary sets of artworks for two different groups of participants showing the stability of art interpretation. The second focus of this paper was on determining how far computational algorithms would be able to capture human performance or would be able in general to separate different art categories. Using several state-of-the-art algorithms from computer vision, we found that whereas low-level appearance information can give some clues about category membership, human grouping strategies included also much higher-level concepts.
eurographics | 2005
Jaume Rigau; Miquel Feixas; Mateu Sbert
In this paper, we introduce a new information-theoretic approach to study the complexity of an image. The new framework we present here is based on considering the information channel that goes from the histogram to the regions of the partitioned image, maximizing the mutual information. Image complexity has been related to the entropy of the image intensity histogram. This disregards the spatial distribution of pixels, as well as the fact that a complexity measure must take into account at what level one wants to describe an object. We define the complexity by using two measures which take into account the level at which the image is considered. One is the number of partitioning regions needed to extract a given ratio of information from the image. The other is the compositional complexity given by the Jensen-Shannon divergence of the partitioned image.
medical image computing and computer assisted intervention | 2004
Jaume Rigau; Miquel Feixas; Mateu Sbert; Anton Bardera; Imma Boada
In this paper we propose a two-step mutual information-based algorithm for medical image segmentation. In the first step, the image is structured into homogeneous regions, by maximizing the mutual information gain of the channel going from the histogram bins to the regions of the partitioned image. In the second step, the intensity bins of the histogram are clustered by minimizing the mutual information loss of the reversed channel. Thus, the compression of the channel variables is guided by the preservation of the information on the other. An important application of this algorithm is to preprocess the images for multimodal image registration. In particular, for a low number of histogram bins, an outstanding robustness in the registration process is obtained by using as input the previously segmented images.