Mira C. Puri
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mira C. Puri.
The EMBO Journal | 1995
Mira C. Puri; Janet Rossant; Kari Alitalo; Alan Bernstein; Juha Partanen
Vascular endothelial cells are critical for the development and function of the mammalian circulatory system. We have analyzed the role of the endothelial cell‐specific receptor tyrosine kinase TIE in the mouse vasculature. Mouse embryos homozygous for a disrupted Tie allele developed severe edema, their microvasculature was ruptured and they died between days 13.5 and 14.5 of gestation. The major blood vessels of the homozygous embryos appeared normal. Cells lacking a functional Tie gene were unable to contribute to the adult kidney endothelium in chimeric animals, further demonstrating the intrinsic requirement for TIE in endothelial cells. We conclude that TIE is required during embryonic development for the integrity and survival of vascular endothelial cells, particularly in the regions undergoing angiogenic growth of capillaries. TIE is not essential, however, for vasculogenesis, the early differentiation of endothelial cells.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Mira C. Puri; Alan Bernstein
In mammals, the continuous production of hematopoietic cells (HCs) is sustained by a small number of hematopoietic stem cells (HSCs) residing in the bone marrow. Early HSC activity arises in the aorta-gonad mesonephros region, within cells localized to the ventral floor of the major blood vessels, suggesting that the first HSCs may be derived from cells capable of giving rise to the hematopoietic system and to the endothelial cells of the vasculature. TIE1 (TIE) and TIE2 (TEK) are related receptor tyrosine kinases with an embryonic expression pattern in endothelial cells, their precursors, and HCs, suggestive of a role in the divergence and function of both lineages. Indeed, gene targeting approaches have shown that TIE1, TIE2, and ligands for TIE2, the angiopoietins, are essential for vascular development and maintenance. To explore possible roles for these receptors in HCs, we have examined the ability of embryonic cells lacking both TIE1 and TIE2 to contribute to developmental and adult hematopoiesis by generating chimeric animals between normal embryonic cells and cells lacking these receptors. We show here that TIE receptors are not required for differentiation and proliferation of definitive hematopoietic lineages in the embryo and fetus; surprisingly, however, these receptors are specifically required during postnatal bone marrow hematopoiesis.
Stem Cells | 2012
Mira C. Puri; Andras Nagy
Extraordinary advances in pluripotent stem cell research have initiated an era of hope for regenerative strategies to treat human disease. Besides embryonic stem cells, the discovery of induced pluripotent stem cells widened the possibility of patient‐specific cell therapy, drug discovery, and disease modeling. Although similar, it has become clear that these two pluripotent cell types display significant differences. In this review, we explore current knowledge of the molecular and functional similarities and differences between these two cell types to emphasize the necessity for thorough characterization of their properties as well as their differentiation capabilities in the pluripotent state. Such comparative studies will be crucial for determining the more suitable cell type for future stem cell‐based therapies for human degenerative diseases. STEM CELLS 2012;30:10–14
Nature | 2014
Peter D. Tonge; Andrew J. Corso; Claudio Monetti; Samer M.I. Hussein; Mira C. Puri; Iacovos P. Michael; Mira Li; Dong Sung Lee; Jessica C. Mar; Nicole Cloonan; David L. A. Wood; Maely E. Gauthier; Othmar Korn; Jennifer L. Clancy; Thomas Preiss; Sean M. Grimmond; Jong Yeon Shin; Jeong-Sun Seo; Christine A. Wells; Ian Rogers; Andras Nagy
Pluripotency is defined by the ability of a cell to differentiate to the derivatives of all the three embryonic germ layers: ectoderm, mesoderm and endoderm. Pluripotent cells can be captured via the archetypal derivation of embryonic stem cells or via somatic cell reprogramming. Somatic cells are induced to acquire a pluripotent stem cell (iPSC) state through the forced expression of key transcription factors, and in the mouse these cells can fulfil the strictest of all developmental assays for pluripotent cells by generating completely iPSC-derived embryos and mice. However, it is not known whether there are additional classes of pluripotent cells, or what the spectrum of reprogrammed phenotypes encompasses. Here we explore alternative outcomes of somatic reprogramming by fully characterizing reprogrammed cells independent of preconceived definitions of iPSC states. We demonstrate that by maintaining elevated reprogramming factor expression levels, mouse embryonic fibroblasts go through unique epigenetic modifications to arrive at a stable, Nanog-positive, alternative pluripotent state. In doing so, we prove that the pluripotent spectrum can encompass multiple, unique cell states.
Nature Communications | 2014
Dong Sung Lee; Jong Yeon Shin; Peter D. Tonge; Mira C. Puri; Seungbok Lee; Hansoo Park; Won Chul Lee; Samer M.I. Hussein; Thomas Bleazard; Ji Young Yun; Jihye Kim; Mira Li; Nicole Cloonan; David L. A. Wood; Jennifer L. Clancy; Rowland Mosbergen; Jae Hyuk Yi; Kap Seok Yang; Hyung Tae Kim; Hwanseok Rhee; Christine A. Wells; Thomas Preiss; Sean M. Grimmond; Ian Rogers; Andras Nagy; Jeong-Sun Seo
Reprogramming of somatic cells to induced pluripotent stem cells involves a dynamic rearrangement of the epigenetic landscape. To characterize this epigenomic roadmap, we have performed MethylC-seq, ChIP-seq (H3K4/K27/K36me3) and RNA-Seq on samples taken at several time points during murine secondary reprogramming as part of Project Grandiose. We find that DNA methylation gain during reprogramming occurs gradually, while loss is achieved only at the ESC-like state. Binding sites of activated factors exhibit focal demethylation during reprogramming, while ESC-like pluripotent cells are distinguished by extension of demethylation to the wider neighbourhood. We observed that genes with CpG-rich promoters demonstrate stable low methylation and strong engagement of histone marks, whereas genes with CpG-poor promoters are safeguarded by methylation. Such DNA methylation-driven control is the key to the regulation of ESC-pluripotency genes, including Dppa4, Dppa5a and Esrrb. These results reveal the crucial role that DNA methylation plays as an epigenetic switch driving somatic cells to pluripotency.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Linda Chang; Michela Noseda; Michelle Higginson; Michelle Ly; Alexandre Patenaude; Megan Fuller; Alastair H. Kyle; Andrew I. Minchinton; Mira C. Puri; Daniel J. Dumont; Aly Karsan
Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1+CD31dimvascular endothelial (VE)-cadherin−CD45− precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1+ precursor cell, but not the VE-cadherin+ endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1+ precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1+ local precursor to VSMC in a spatiotemporal fashion across all vascular beds.
Nature Communications | 2015
Nika Shakiba; Carl A. White; Yonatan Y. Lipsitz; Ayako Yachie-Kinoshita; Peter D. Tonge; Samer M.I. Hussein; Mira C. Puri; Judith Elbaz; James Morrissey-Scoot; Mira Li; Javier Muñoz; Marco Benevento; Ian Rogers; Jacob Hanna; Albert J. R. Heck; Bernd Wollscheid; Andras Nagy; Peter W. Zandstra
Reprogramming is a dynamic process that can result in multiple pluripotent cell types emerging from divergent paths. Cell surface protein expression is a particularly desirable tool to categorize reprogramming and pluripotency as it enables robust quantification and enrichment of live cells. Here we use cell surface proteomics to interrogate mouse cell reprogramming dynamics and discover CD24 as a marker that tracks the emergence of reprogramming-responsive cells, while enabling the analysis and enrichment of transgene-dependent (F-class) and -independent (traditional) induced pluripotent stem cells (iPSCs) at later stages. Furthermore, CD24 can be used to delineate epiblast stem cells (EpiSCs) from embryonic stem cells (ESCs) in mouse pluripotent culture. Importantly, regulated CD24 expression is conserved in human pluripotent stem cells (PSCs), tracking the conversion of human ESCs to more naive-like PSC states. Thus, CD24 is a conserved marker for tracking divergent states in both reprogramming and standard pluripotent culture.
Nature Communications | 2014
Marco Benevento; Peter D. Tonge; Mira C. Puri; Samer M.I. Hussein; Nicole Cloonan; David L. A. Wood; Sean M. Grimmond; Andras Nagy; Javier Muñoz; Albert J. R. Heck
The ectopic expression of Oct4, Klf4, c-Myc and Sox2 (OKMS) transcription factors allows reprogramming of somatic cells into induced pluripotent stem cells (iPSCs). The reprogramming process, which involves a complex network of molecular events, is not yet fully characterized. Here we perform a quantitative mass spectrometry-based analysis to probe in-depth dynamic proteome changes during somatic cell reprogramming. Our data reveal defined waves of proteome resetting, with the first wave occurring 48 h after the activation of the reprogramming transgenes and involving specific biological processes linked to the c-Myc transcriptional network. A second wave of proteome reorganization occurs in a later stage of reprogramming, where we characterize the proteome of two distinct pluripotent cellular populations. In addition, the overlay of our proteome resource with parallel generated -omics data is explored to identify post-transcriptionally regulated proteins involved in key steps during reprogramming.
Molecular and Cellular Biology | 2005
Kazunobu Tachibana; Nina Jones; Daniel J. Dumont; Mira C. Puri; Alan Bernstein
ABSTRACT The development of the cardiovascular system and the development of the early hematopoietic systems are closely related, and both require signaling through the Tie2 receptor tyrosine kinase. Although endothelial cells and hematopoietic cells as well as their precursors share common gene expression patterns during development, it remains completely unknown how Tie2 signaling coordinately regulates cardiovascular development and early hematopoiesis in vivo. We show here that mice with a targeted mutation in tyrosine residue 1100 in the carboxyl-terminal tail of Tie2 display defective cardiac development and impaired hematopoietic and endothelial cell development in the paraaortic splanchnopleural mesoderm similar to that seen in Tie2-null mutant mice. Surprisingly, however, unlike Tie2-null mutant mice, mice deficient in signaling through this tyrosine residue show a normal association of perivascular cells with nascent blood vessels. These studies are the first to demonstrate the physiological importance of a single tyrosine residue in Tie2, and they suggest that multiple tyrosine residues in the receptor may coordinate cardiovascular development and early hematopoietic development.
Developmental Biology | 2009
Aya Nomura-Kitabayashi; Gregory A. Anderson; Gillian Sleep; Jenny Mena; Amna Karabegovic; Sharon Karamath; Michelle Letarte; Mira C. Puri
Vascular patterning depends on precisely coordinated timing of endothelial cell differentiation and onset of cardiac function. Endoglin is a transmembrane receptor for members of the TGF-beta superfamily that is expressed on endothelial cells from early embryonic gestation to adult life. Heterozygous loss of function mutations in human ENDOGLIN cause Hereditary Hemorrhagic Telangiectasia Type 1, a vascular disorder characterized by arteriovenous malformations that lead to hemorrhage and stroke. Endoglin null mice die in embryogenesis with numerous lesions in the cardiovascular tree including incomplete yolk sac vessel branching and remodeling, vessel dilation, hemorrhage and abnormal cardiac morphogenesis. Since defects in multiple cardiovascular tissues confound interpretations of these observations, we performed in vivo chimeric rescue analysis using Endoglin null embryonic stem cells. We demonstrate that Endoglin is required cell autonomously for endocardial to mesenchymal transition during formation of the endocardial cushions. Endoglin null cells contribute widely to endothelium in chimeric embryos rescued from cardiac development defects, indicating that Endoglin is dispensable for angiogenesis and vascular remodeling in the midgestation embryo, but is required for early patterning of the heart.