Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mira Krendel is active.

Publication


Featured researches published by Mira Krendel.


Nature Cell Biology | 2002

Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton

Mira Krendel; Frank Zenke; Gary M. Bokoch

Regulation of the actin cytoskeleton by microtubules is mediated by the Rho family GTPases. However, the molecular mechanisms that link microtubule dynamics to Rho GTPases have not, as yet, been identified. Here we show that the Rho guanine nucleotide exchange factor (GEF)-H1 is regulated by an interaction with microtubules. GEF-H1 mutants that are deficient in microtubule binding have higher activity levels than microtubule–bound forms. These mutants also induce Rho-dependent changes in cell morphology and actin organization. Furthermore, drug-induced microtubule depolymerization induces changes in cell morphology and gene expression that are similar to the changes induced by the expression of active forms of GEF-H1. Furthermore, these effects are inhibited by dominant-negative versions of GEF-H1. Thus, GEF-H1 links changes in microtubule integrity to Rho-dependent regulation of the actin cytoskeleton.


The New England Journal of Medicine | 2011

MYO1E Mutations and Childhood Familial Focal Segmental Glomerulosclerosis

Caterina Mele; Paraskevas Iatropoulos; Roberta Donadelli; Andrea Calabria; Ramona Maranta; Paola Cassis; Simona Buelli; Susanna Tomasoni; Rossella Piras; Mira Krendel; Serena Bettoni; Marina Morigi; Massimo Delledonne; Carmine Pecoraro; Isabella Abbate; Maria Rosaria Capobianchi; Friedhelm Hildebrandt; Edgar A. Otto; Franz Schaefer; Fabio Macciardi; Fatih Ozaltin; Sevinç Emre; Tulin Ibsirlioglu; Ariela Benigni; Giuseppe Remuzzi; Marina Noris

BACKGROUND Focal segmental glomerulosclerosis is a kidney disease that is manifested as the nephrotic syndrome. It is often resistant to glucocorticoid therapy and progresses to end-stage renal disease in 50 to 70% of patients. Genetic studies have shown that familial focal segmental glomerulosclerosis is a disease of the podocytes, which are major components of the glomerular filtration barrier. However, the molecular cause in over half the cases of primary focal segmental glomerulosclerosis is unknown, and effective treatments have been elusive. METHODS We performed whole-genome linkage analysis followed by high-throughput sequencing of the positive-linkage area in a family with autosomal recessive focal segmental glomerulosclerosis (index family) and sequenced a newly discovered gene in 52 unrelated patients with focal segmental glomerulosclerosis. Immunohistochemical studies were performed on human kidney-biopsy specimens and cultured podocytes. Expression studies in vitro were performed to characterize the functional consequences of the mutations identified. RESULTS We identified two mutations (A159P and Y695X) in MYO1E, which encodes a nonmuscle class I myosin, myosin 1E (Myo1E). The mutations in MYO1E segregated with focal segmental glomerulosclerosis in two independent pedigrees (the index family and Family 2). Patients were homozygous for the mutations and did not have a response to glucocorticoid therapy. Electron microscopy showed thickening and disorganization of the glomerular basement membrane. Normal expression of Myo1E was documented in control human kidney-biopsy specimens in vivo and in glomerular podocytes in vitro. Transfection studies revealed abnormal subcellular localization and function of the A159P-Myo1E mutant. The Y695X mutation causes loss of calmodulin binding and of the tail domains of Myo1E. CONCLUSIONS MYO1E mutations are associated with childhood-onset, glucocorticoid-resistant focal segmental glomerulosclerosis. Our data provide evidence of a role of Myo1E in podocyte function and the consequent integrity of the glomerular filtration barrier.


FEBS Letters | 2007

Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis

Mira Krendel; Emily Osterweil; Mark S. Mooseker

Myosin 1E is one of two “long‐tailed” human Class I myosins that contain an SH3 domain within the tail region. SH3 domains of yeast and amoeboid myosins I interact with activators of the Arp2/3 complex, an important regulator of actin polymerization. No binding partners for the SH3 domains of myosins I have been identified in higher eukaryotes. In the current study, we show that two proteins with prominent functions in endocytosis, synaptojanin‐1 and dynamin, bind to the SH3 domain of human Myo1E. Myosin 1E co‐localizes with clathrin‐ and dynamin‐containing puncta at the plasma membrane and this co‐localization requires an intact SH3 domain. Expression of Myo1E tail, which acts in a dominant‐negative manner, inhibits endocytosis of transferrin. Our findings suggest that myosin 1E may contribute to receptor‐mediated endocytosis.


Biochemistry | 2010

Myo1e binds anionic phospholipids with high affinity.

Elizabeth A. Feeser; Cherry Mae G. Ignacio; Mira Krendel; E. Michael Ostap

Myo1e is a single-headed motor protein that has been shown to play roles in clathrin-mediated endocytosis in HeLa cells and podocyte function in the kidney. The myo1e C-terminal tail domain includes a basic region that is required for localization to clathrin-coated vesicles and contains a putative pleckstrin-homology (PH) domain that has been shown to play a role in phospholipid binding in other myosin-I proteins. We used sedimentation assays, stopped-flow fluorescence, and fluorescence microscopy to determine the membrane binding affinities, kinetics, and in vivo localization of fluorescently labeled recombinant myo1e-tail constructs. We found that the myo1e tail binds tightly to large unilamellar vesicles (LUVs) containing physiological concentrations of the anionic phospholipids phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) or phosphatidylserine. The rate of myo1e attachment to LUVs nears the diffusion limit while the calculated rate of detachment from LUVs is slow (k(diss) ≤ 0.4 s(-1)). Mutation of conserved residues in the myo1e PH domain has little effect on lipid binding in vitro or membrane localization in vivo. Soluble inositol phosphate headgroups, such as inositol 1,4,5-trisphosphate, can compete with PtdIns(4,5)P(2) for binding, but the apparent affinity for the soluble inositol phosphate is substantially lower than that for PtdIns(4,5)P(2). These results suggest that myo1e binds lipids through nonspecific electrostatic interactions rather than a stereospecific protein-phosphoinositide interaction.


Cytoskeleton | 2014

Non-muscle myosins in tumor progression, cancer cell invasion, and metastasis.

Jessica L. Ouderkirk; Mira Krendel

The actin cytoskeleton, which regulates cell polarity, adhesion, and migration, can influence cancer progression, including initial acquisition of malignant properties by normal cells, invasion of adjacent tissues, and metastasis to distant sites. Actin‐dependent molecular motors, myosins, play key roles in regulating tumor progression and metastasis. In this review, we examine how non‐muscle myosins regulate neoplastic transformation and cancer cell migration and invasion. Members of the myosin superfamily can act as either enhancers or suppressors of tumor progression. This review summarizes the current state of knowledge on how mutations or epigenetic changes in myosin genes and changes in myosin expression may affect tumor progression and patient outcomes and discusses the proposed mechanisms linking myosin inactivation or upregulation to malignant phenotype, cancer cell migration, and metastasis.


American Journal of Physiology-renal Physiology | 2012

Podocyte-specific knockout of myosin 1e disrupts glomerular filtration

Sharon E. Chase; Christina V. Encina; Lindsay R. Stolzenburg; Arthur H. Tatum; Lawrence B. Holzman; Mira Krendel

Myosin 1e (myo1e) is an actin-dependent molecular motor that plays an important role in kidney functions. Complete knockout of myo1e in mice and Myo1E mutations in humans are associated with nephrotic syndrome and focal segmental glomerulosclerosis. In this paper, we tested the hypothesis that myo1e is necessary for normal functions of glomerular visceral epithelial cells (podocytes) using podocyte-targeted knockout of myo1e. Myo1e was selectively knocked out in podocytes using Cre-mediated recombination controlled by the podocin promoter. Myo1e loss from podocytes resulted in proteinuria, podocyte foot process effacement, and glomerular basement membrane disorganization. Our findings indicate that myo1e expression in podocytes is necessary for normal glomerular filtration and that podocyte defects are likely to represent the primary pathway leading to glomerular disease associated with Myo1E mutations.


American Journal of Physiology-renal Physiology | 2013

Myosin 1e is a component of the glomerular slit diaphragm complex that regulates actin reorganization during cell-cell contact formation in podocytes.

Jing Bi; Sharon E. Chase; Christopher Pellenz; Hidetake Kurihara; Alan S. Fanning; Mira Krendel

Glomerular visceral epithelial cells, also known as podocytes, are critical to both normal kidney function and the development of kidney disease. Podocyte actin cytoskeleton and their highly specialized cell-cell junctions (also called slit diaphragm complexes) play key roles in controlling glomerular filtration. Myosin 1e (myo1e) is an actin-based molecular motor that is expressed in renal glomeruli. Disruption of the Myo1e gene in mice and humans promotes podocyte injury and results in the loss of the integrity of the glomerular filtration barrier. Here, we have used biochemical and microscopic approaches to determine whether myo1e is associated with the slit diaphragm complexes in glomerular podocytes. Myo1e was consistently enriched in the slit diaphragm fraction during subcellular fractionation of renal glomeruli and colocalized with the slit diaphragm markers in mouse kidney. Live cell imaging studies showed that myo1e was recruited to the newly formed cell-cell junctions in cultured podocytes, where it colocalized with the actin filament cables aligned with the nascent contacts. Myo1e-null podocytes expressing FSGS-associated myo1e mutant (A159P) did not efficiently assemble actin cables along new cell-cell junctions. We have mapped domains in myo1e that were critical for its localization to cell-cell junctions and determined that the SH3 domain of myo1e tail interacts with ZO-1, a component of the slit diaphragm complex and tight junctions. These findings suggest that myo1e represents a component of the slit diaphragm complex and may contribute to regulating junctional integrity in kidney podocytes.


Biology Open | 2013

Myosin 1E localizes to actin polymerization sites in lamellipodia, affecting actin dynamics and adhesion formation

Prabuddha Gupta; Nils C. Gauthier; Yu Cheng-Han; Yuan Zuanning; Bruno Pontes; Malte Ohmstede; René Martin; Hans-Joachim Knölker; Hans-Günther Döbereiner; Mira Krendel; Michael P. Sheetz

Summary Because the actin network in active lamellipodia is continuously assembling at the edge, moving inward and disassembling, there is a question as to how actin-binding proteins and other components are transported to the leading edge and how nascent adhesions are stabilized. Active transport could play a significant role in these functions but the components involved are unknown. We show here that Myosin 1E (a long tailed Myosin 1 isoform) rapidly moves to the tips of active lamellipodia and to actin-rich early adhesions, unlike Myosin 1G, 1B or 1C (short tailed isoforms). Myosin 1E co-localizes with CARMIL, FHOD1, Arp3 and &bgr;3-integrin in those early adhesions. But these structures precede stable paxillin-rich adhesions. Myosin 1E movement depends upon actin-binding domains and the presence of an SH3 oligomerization domain. Overexpression of a Myosin 1E deletion mutant without the extreme C-terminal interacting (SH3) domain (Myosin 1E&Dgr;SH3) increases edge fluctuations and decreases stable adhesion lifetimes. In contrast, overexpression of Myosin 1E full tail domain (TH1+TH2+TH3/SH3) decreases edge fluctuation. In Myosin 1E knockdown cells, and more prominently in cells treated with Myosin 1 inhibitor, cell–matrix adhesions are also short-lived and fail to mature. We suggest that, by moving to actin polymerization sites and early adhesion sites in active lamellipodia, Myosin 1E might play important roles in transporting not only important polymerizing proteins but also proteins involved in adhesion stabilization.


Oncogene | 2017

Hic-5 remodeling of the stromal matrix promotes breast tumor progression

Gregory J. Goreczny; J L Ouderkirk-Pecone; Eric C. Olson; Mira Krendel; Christopher E. Turner

The remodeling of the stromal extracellular matrix (ECM) has a crucial, but incompletely understood role during tumor progression and metastasis. Hic-5, a focal adhesion scaffold protein, has previously been implicated in tumor cell invasion, proliferation and metastasis. To investigate the role of Hic-5 in breast tumor progression in vivo, Hic-5−/− mice were generated and crossed with the Mouse Mammary Tumor Virus-Polyoma Middle T-Antigen mouse. Tumors from the Hic-5−/−;PyMT mice exhibited increased latency and reduced growth, with fewer lung metastases, as compared with Hic-5+/−;PyMT mice. Immunohistochemical analysis showed that Hic-5 is primarily expressed in the cancer-associated fibroblasts (CAFs). Further analysis revealed that the Hic-5−/−;PyMT tumor stroma contains fewer CAFs and exhibits reduced ECM deposition. The remodeling of the stromal matrix by CAFs has been shown to increase tumor rigidity to indirectly regulate FAK Y397 phosphorylation in tumor cells to promote their growth and invasion. Accordingly, the Hic-5−/−;PyMT tumor cells exhibited a reduction in FAK Y397 phosphorylation. Isolated Hic-5−/−;PyMT CAFs were defective in stress fiber organization and exhibited reduced contractility. These cells also failed to efficiently deposit and organize the ECM in two and three dimensions. This, in turn, impacted three-dimensional MDA-MB-231 tumor cell migration behavior. Thus, using a new knockout mouse model, we have identified Hic-5 expression in CAFs as a key requirement for deposition and remodeling of the stromal ECM to promote non-cell autonomous breast tumor progression.


Experimental Cell Research | 2014

Myosin 1e is a component of the invadosome core that contributes to regulation of invadosome dynamics.

Jessica L. Ouderkirk; Mira Krendel

Myosin 1e (myo1e) is an actin-based motor protein that has been implicated in cell adhesion and migration. We examined the role of myo1e in invadosomes, actin-rich adhesion structures that are important for degradation and invasion of the extracellular matrix. RSV-transformed BHK-21 cells, which readily form invadosomes and invadosome rosettes, were used as the experimental model. Myo1e localization to the actin-rich core of invadosomes required the proline-rich Tail Homology 2 (TH2) domain. During invadosome rosette expansion, we observed myo1e recruitment to newly forming invadosomes via Tail Homology 1 (TH1)-dependent interactions with the plasma membrane, where it preceded actin and paxillin. Dominant-negative inhibition of myo1e resulted in mislocalized invadosome formation, usually at the center of the rosette. We propose that TH2 domain of myo1e provides the key signal for localization to invadosomes, while TH1 domain interactions facilitate myo1e targeting to the plasma membrane-proximal locations within the rosettes. Myo1e may then act as a scaffold, linking the plasma membrane with the actin cytoskeleton and helping direct new invadosome formation to the periphery of the rosette.

Collaboration


Dive into the Mira Krendel's collaboration.

Top Co-Authors

Avatar

Jessica L. Ouderkirk

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Jing Bi

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher E. Turner

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Gregory J. Goreczny

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Sharon E. Chase

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Jens Wenzel

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Roland Lang

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Angelina Regua

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar

Arthur H. Tatum

State University of New York Upstate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge