Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mira M. Wouters is active.

Publication


Featured researches published by Mira M. Wouters.


Neurogastroenterology and Motility | 2009

Essential role for TRPV1 in stress‐induced (mast cell‐dependent) colonic hypersensitivity in maternally separated rats

R.M.J.G.J. van den Wijngaard; Tamira K. Klooker; Olaf Welting; Oana I. Stanisor; Mira M. Wouters; D van der Coelen; David C. Bulmer; Pieter J. Peeters; Jeroen Aerssens; R de Hoogt; K. Lee; W. J. de Jonge; Guy E. Boeckxstaens

Abstract  Irritable bowel syndrome is in part characterized by an increased sensitivity to colonic distension. Stress is an important trigger factor for symptom generation. We hypothesized that stress induces visceral hypersensitivity via mast cell degranulation and transient receptor ion channel 1 (TRPV1) modulation. We used the rat model of neonatal maternal separation (MS) to investigate this hypothesis. The visceromotor response to colonic distention was assessed in adult MS and non‐handled (NH) rats before and after acute water avoidance (WA) stress. We evaluated the effect of the mast cell stabilizer doxantrazole, neutralizing antiserum against the mast cell mediator nerve growth factor (NGF) and two different TRPV1 antagonists; capsazepine (non‐specific) and SB‐705498 (TRPV1‐specific). Immunohistochemistry was used to assess post‐WA TRPV1 expression in dorsal root ganglia and the presence of immunocytes in proximal and distal colon. Retrograde labelled and microdissected dorsal root ganglia sensory neurons were used to evaluate TRPV1 gene transcription. Results showed that acute stress induces colonic hypersensitivity in MS but not in NH rats. Hypersensitivity was prevented by prestress administration of doxantrazole and anti‐NGF. Capsazepine inhibited and SB‐705498 reversed poststress hypersensitivity. In MS rats, acute stress induced a slight increase in colonic mast cell numbers without further signs of inflammation. Post‐WA TRPV1 transcription and expression was not higher in MS than NH rats. In conclusion, the present data on stress‐induced visceral hypersensitivity confirm earlier reports on the essential role of mast cells and NGF. Moreover, the results also suggest that TRPV1 modulation (in the absence of overt inflammation) is involved in this response. Thus, mast cells and TRPV1 are potential targets to treat stress‐induced visceral hypersensitivity.


Gut | 2016

The role of mast cells in functional GI disorders

Mira M. Wouters; María Vicario; Javier Santos

Functional gastrointestinal disorders (FGIDs) are characterized by chronic complaints arising from disorganized brain-gut interactions leading to dysmotility and hypersensitivity. The two most prevalent FGIDs, affecting up to 16–26% of worldwide population, are functional dyspepsia and irritable bowel syndrome. Their etiopathogenic mechanisms remain unclear, however, recent observations reveal low-grade mucosal inflammation and immune activation, in association with impaired epithelial barrier function and aberrant neuronal sensitivity. These findings come to challenge the traditional view of FGIDs as pure functional disorders, and relate the origin to a tangible organic substrate. The mucosal inflammatory infiltrate is dominated by mast cells, eosinophils and intraepithelial lymphocytes in the intestine of FGIDs. It is well established that mast cell activation can generate epithelial and neuro-muscular dysfunction and promote visceral hypersensitivity and altered motility patterns in FGIDs, postoperative ileus, food allergy and inflammatory bowel disease. This review will discuss the role of mucosal mast cells in the gastrointestinal tract with a specific focus on recent advances in disease mechanisms and clinical management in irritable bowel syndrome and functional dyspepsia.


Nature Genetics | 2015

Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases.

Tobias L. Lenz; Aaron J. Deutsch; Buhm Han; Xinli Hu; Yukinori Okada; Stephen Eyre; Michael Knapp; Alexandra Zhernakova; Tom W J Huizinga; Gonçalo R. Abecasis; Jessica Becker; Guy E. Boeckxstaens; Wei-Min Chen; Andre Franke; Dafna D. Gladman; Ines Gockel; Javier Gutierrez-Achury; Javier Martin; Rajan P. Nair; Markus M. Nöthen; Suna Onengut-Gumuscu; Proton Rahman; Solbritt Rantapää-Dahlqvist; Philip E. Stuart; Lam C. Tsoi; David A. van Heel; Jane Worthington; Mira M. Wouters; Lars Klareskog; James T. Elder

Human leukocyte antigen (HLA) genes confer substantial risk for autoimmune diseases on a log-additive scale. Here we speculated that differences in autoantigen-binding repertoires between a heterozygotes two expressed HLA variants might result in additional non-additive risk effects. We tested the non-additive disease contributions of classical HLA alleles in patients and matched controls for five common autoimmune diseases: rheumatoid arthritis (ncases = 5,337), type 1 diabetes (T1D; ncases = 5,567), psoriasis vulgaris (ncases = 3,089), idiopathic achalasia (ncases = 727) and celiac disease (ncases = 11,115). In four of the five diseases, we observed highly significant, non-additive dominance effects (rheumatoid arthritis, P = 2.5 × 10−12; T1D, P = 2.4 × 10−10; psoriasis, P = 5.9 × 10−6; celiac disease, P = 1.2 × 10−87). In three of these diseases, the non-additive dominance effects were explained by interactions between specific classical HLA alleles (rheumatoid arthritis, P = 1.8 × 10−3; T1D, P = 8.6 × 10−27; celiac disease, P = 6.0 × 10−100). These interactions generally increased disease risk and explained moderate but significant fractions of phenotypic variance (rheumatoid arthritis, 1.4%; T1D, 4.0%; celiac disease, 4.1%) beyond a simple additive model.


Gut | 2015

Exploring the genetics of irritable bowel syndrome: a GWA study in the general population and replication in multinational case-control cohorts

Weronica E. Ek; Anna Reznichenko; Stephan Ripke; Beate Niesler; Marco Zucchelli; Natalia V. Rivera; Peter T. Schmidt; Nancy L. Pedersen; Patrik K. E. Magnusson; Nicholas J. Talley; Elizabeth G. Holliday; Lesley A. Houghton; Maria Gazouli; George Karamanolis; Gudrun Rappold; Barbara Burwinkel; Harald Surowy; Joseph Rafter; Ghazaleh Assadi; Ling Li; Evangelia Papadaki; Dario Gambaccini; Santino Marchi; Rocchina Colucci; Corrado Blandizzi; Raffaella Barbaro; Pontus Karling; Susanna Walter; Bodil Ohlsson; Hans Törnblom

Objective IBS shows genetic predisposition, but adequately powered gene-hunting efforts have been scarce so far. We sought to identify true IBS genetic risk factors by means of genome-wide association (GWA) and independent replication studies. Design We conducted a GWA study (GWAS) of IBS in a general population sample of 11 326 Swedish twins. IBS cases (N=534) and asymptomatic controls (N=4932) were identified based on questionnaire data. Suggestive association signals were followed-up in 3511 individuals from six case-control cohorts. We sought genotype-gene expression correlations through single nucleotide polymorphism (SNP)-expression quantitative trait loci interactions testing, and performed in silico prediction of gene function. We compared candidate gene expression by real-time qPCR in rectal mucosal biopsies of patients with IBS and controls. Results One locus at 7p22.1, which includes the genes KDELR2 (KDEL endoplasmic reticulum protein retention receptor 2) and GRID2IP (glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein), showed consistent IBS risk effects in the index GWAS and all replication cohorts and reached p=9.31×10−6 in a meta-analysis of all datasets. Several SNPs in this region are associated with cis effects on KDELR2 expression, and a trend for increased mucosal KDLER2 mRNA expression was observed in IBS cases compared with controls. Conclusions Our results demonstrate that general population-based studies combined with analyses of patient cohorts provide good opportunities for gene discovery in IBS. The 7p22.1 and other risk signals detected in this study constitute a good starting platform for hypothesis testing in future functional investigations.


The American Journal of Gastroenterology | 2014

Sensitivity testing in irritable bowel syndrome with rectal capsaicin stimulations: role of TRPV1 upregulation and sensitization in visceral hypersensitivity?

Sander van Wanrooij; Mira M. Wouters; Lukas Van Oudenhove; Winde Vanbrabant; Stephanie Mondelaers; Patrick Kollmann; Florian Kreutz; Michael Schemann; Guy E. Boeckxstaens

OBJECTIVES:Abnormal pain perception or visceral hypersensitivity (VH) is considered to be an important mechanism underlying symptoms in a subgroup of irritable bowel syndrome (IBS) patients. Increased TRPV1 (transient receptor potential cation channel subfamily V member 1) expression in rectal biopsies of IBS patients suggests a potentially important role for this nociceptor in the pathophysiology of IBS. However, evidence underscoring the involvement of TRPV1 in visceral perception in IBS is lacking. The objective of this study was to evaluate the role of TRPV1 in VH to rectal distension and clinical symptoms in patients with IBS.METHODS:A total of 48 IBS patients and 25 healthy volunteers (HVs) were invited to undergo subsequent assessment of sensitivity to rectal distensions and rectal capsaicin applications. Visceral sensitivity was evaluated by rectal distension at 3, 9, and 21 mm Hg above minimal distension pressure (MDP). Capsaicin was applied to the rectal mucosa (0.01%, 0.1%, or solvent only in random order). Visceral sensations (urge to defecate, pain, burning, and warmth sensation) were scored on a 100-mm visual analog scale (VAS). TRPV1 expression in rectal biopsies was determined by immunohistochemistry and real-time PCR.RESULTS:A total of 23 IBS patients (48%) were hypersensitive to rectal distensions (VH-IBS). A concentration-dependent increase of urge and pain perception was present in HVs and IBS patients during capsaicin 0.01 and 0.1% applications. VH-IBS patients experienced a significantly increased perception of pain, but not urge, during capsaicin applications compared with normosensitive patients (ns-IBS) and HVs. Increased pain perception was significantly associated with anxiety and VH, symptoms scores of abdominal pain, loose stools, and stool frequency. Anxiety experienced during the experimental procedure was enhanced in VH-IBS patients but not in ns-IBS or HVs. However, rectal TRPV1 expression was similar in VH-IBS, ns-IBS, and HVs on both mRNA and protein expression levels. TRPV1 expression levels did not correlate with pain perception to capsaicin or clinical symptoms in IBS patients or the subgroups.CONCLUSIONS:IBS patients with VH to rectal distension reveal increased pain perception to rectal application of capsaicin, as well as an increased anxiety response. No evidence for TRPV1 upregulation could be demonstrated. As both VH and anxiety are independently associated with increased pain perception to rectal capsaicin application, our data suggest that both peripheral and central factors are involved, with increased receptor sensitivity as a speculative possibility.


The American Journal of Gastroenterology | 2012

Mucosal Immune Cell Numbers and Visceral Sensitivity in Patients With Irritable Bowel Syndrome: Is There Any Relationship?

Breg Braak; Tamira K. Klooker; Mira M. Wouters; Olaf Welting; Chris M. van der Loos; Oana I. Stanisor; Sophie A. van Diest; Rene M. van den Wijngaard; Guy E. Boeckxstaens

OBJECTIVES:Repeated exposure to stress leads to mast cell degranulation, microscopic inflammation, and subsequent visceral hypersensitivity in animal models. To what extent this pathophysiological pathway has a role in patients with the irritable bowel syndrome (IBS) has not been properly investigated. The objective of this study was to assess the relationship between visceral hypersensitivity, microscopic inflammation, and the stress response in IBS.METHODS:Microscopic inflammation of the colonic mucosa was evaluated by immunohistochemistry in 66 IBS patients and 20 healthy volunteers (HV). Rectal sensitivity was assessed by a barostat study using an intermittent pressure-controlled distension protocol. Salivary cortisol to a psychological stress was measured to assess the stress response.RESULTS:Compared with HV, mast cells, T cells, and macrophages were decreased in IBS patients. Similarly, λ-free light chain (FLC)-positive mast cells were decreased but not immunoglobulin E (IgE)- and IgG-positive mast cells. There were no differences between hypersensitive and normosensitive IBS patients. No relation was found between any of the immune cells studied and the thresholds of discomfort, urge, first sensation, or IBS symptoms (e.g., abdominal pain, stool-related complaints, bloating). Finally, stress-related symptoms and the hypothalamic–pituitary–adrenal-axis response to stress were not correlated with the number of mast cells or the presence of visceral hypersensitivity.CONCLUSIONS:Although the number of mast cells, macrophages, T cells, and λFLC-positive mast cells is decreased in IBS compared with HV, this is not associated with the presence of visceral hypersensitivity or abnormal stress response. Our data question the role of microscopic inflammation as an underlying mechanism of visceral hypersensitivity, but rather suggest dysregulation of the mucosal immune system in IBS.


Nature Genetics | 2014

Common variants in the HLA-DQ region confer susceptibility to idiopathic achalasia

Ines Gockel; Jessica Becker; Mira M. Wouters; Stefan Niebisch; Henning R. Gockel; Timo Hess; David Ramonet; Julian Zimmermann; Ana G. Vigo; Gosia Trynka; Antonio Ruiz de León; Julio Pérez de la Serna; Elena Urcelay; Vinod Kumar; Lude Franke; Harm-Jan Westra; Daniel Drescher; W. Kneist; Jens U. Marquardt; Peter R. Galle; Manuel Mattheisen; Vito Annese; Anna Latiano; Uberto Fumagalli; Luigi Laghi; Rosario Cuomo; Giovanni Sarnelli; Michaela Müller; Alexander J. Eckardt; Jan Tack

Idiopathic achalasia is characterized by a failure of the lower esophageal sphincter to relax due to a loss of neurons in the myenteric plexus. This ultimately leads to massive dilatation and an irreversibly impaired megaesophagus. We performed a genetic association study in 1,068 achalasia cases and 4,242 controls and fine-mapped a strong MHC association signal by imputing classical HLA haplotypes and amino acid polymorphisms. An eight-residue insertion at position 227–234 in the cytoplasmic tail of HLA-DQβ1 (encoded by HLA-DQB1*05:03 and HLA-DQB1*06:01) confers the strongest risk for achalasia (P = 1.73 × 10−19). In addition, two amino acid substitutions in the extracellular domain of HLA-DQα1 at position 41 (lysine encoded by HLA-DQA1*01:03; P = 5.60 × 10−10) and of HLA-DQβ1 at position 45 (glutamic acid encoded by HLA-DQB1*03:01 and HLA-DQB1*03:04; P = 1.20 × 10−9) independently confer achalasia risk. Our study implies that immune-mediated processes are involved in the pathophysiology of achalasia.


Neurogastroenterology and Motility | 2014

Using human intestinal biopsies to study the pathogenesis of irritable bowel syndrome.

Y Nasser; Guy E. Boeckxstaens; Mira M. Wouters; Michael Schemann; Stephen Vanner

Although animal models of the irritable bowel syndrome (IBS) have provided important insights, there are no models that fully express the features of this complex condition. One alternative approach is the use of human intestinal biopsies obtained during endoscopic procedures to examine peripheral mechanisms in this disorder. These studies have served to confirm the existence of peripheral pathways in humans with IBS and have provided many new mechanistic insights. Two general approaches have been employed; one approach has been to examine the biological activity of mediators within the mucosal tissue of IBS patients and the other has been to examine changes in the structural properties of key signaling pathways contained within the biopsies. Using these approaches, important changes have been discovered involving the enteric nervous system and the extrinsic sensory pathway (dorsal root ganglia neurons), the immune system, and epithelial signaling in IBS patients compared to healthy subjects.


Gut | 2014

Genetic variants in CDC42 and NXPH1 as susceptibility factors for constipation and diarrhoea predominant irritable bowel syndrome

Mira M. Wouters; Diether Lambrechts; Michael Knapp; Isabelle Cleynen; Peter J. Whorwell; Lars Agréus; Aldona Dlugosz; Peter T. Schmidt; Jonas Halfvarson; Magnus Simren; Bodil Ohlsson; Pontus Karling; Sander Van Wanrooy; Stephanie Mondelaers; Severine Vermeire; Greger Lindberg; Robin C. Spiller; George E. Dukes; Mauro D'Amato; Guy E. Boeckxstaens

Objective The complex genetic aetiology underlying irritable bowel syndrome (IBS) needs to be assessed in large-scale genetic studies. Two independent IBS cohorts were genotyped to assess whether genetic variability in immune, neuronal and barrier integrity genes is associated with IBS. Design 384 single nucleotide polymorphisms (SNPs) covering 270 genes were genotyped in an exploratory cohort (935 IBS patients, 639 controls). 33 SNPs with Puncorrected<0.05 were validated in an independent set of 497 patients and 887 controls. Genotype distributions of single SNPs were assessed using an additive genetic model in IBS and clinical subtypes, IBS-C and IBS-D, both in individual and combined cohorts. Trait anxiety (N=614 patients, 533 controls), lifetime depression (N=654 patients, 533 controls) and mRNA expression in rectal biopsies (N=22 patients, 29 controls) were correlated with SNP genotypes. Results Two SNPs associated independently in the exploratory and validation cohort: rs17837965-CDC42 with IBS-C (ORexploratory=1.59 (1.05 to 1.76); ORvalidation=1.76 (1.03 to 3.01)) and rs2349775-NXPH1 with IBS-D (ORexploratory=1.28 (1.06 to 1.56); ORvalidation=1.42 (1.08 to 1.88)). When combining both cohorts, the association of rs2349775 withstood post hoc correction for multiple testing in the IBS-D subgroup. Additionally, three SNPs in immune-related genes (rs1464510-LPP, rs1881457-IL13, rs2104286-IL2RA), one SNP in a neuronal gene (rs2349775-NXPH1) and two SNPs in epithelial genes (rs245051-SLC26A2, rs17837965-CDC42) were weakly associated with total-IBS (Puncorrected<0.05). At the functional level, rs1881457 increased IL13 mRNA levels, whereas anxiety and depression scores did not correlate with rs2349775-NXPH1. Conclusions Rs2349775 (NXPH1) and rs17837965 (CDC42) were associated with IBS-D and IBS-C, respectively, in two independent cohorts. Further studies are warranted to validate our findings and to determine the mechanisms underlying IBS pathophysiology.


Neurogastroenterology and Motility | 2012

Peripheral α‐helical CRF (9‐41) does not reverse stress‐induced mast cell dependent visceral hypersensitivity in maternally separated rats

R.M.J.G.J. van den Wijngaard; Oana I. Stanisor; S A van Diest; Olaf Welting; Mira M. Wouters; W. J. de Jonge; Guy E. Boeckxstaens

Background  Acute stress‐induced hypersensitivity to colorectal distention was shown to depend on corticotropin releasing factor (CRF)‐induced mast cell degranulation. At present it remains unclear whether CRF also induces chronic poststress activation of these cells. Accordingly, the objective of this study was to compare pre‐ and poststress CRF‐receptor antagonist treatment protocols for their ability to, respectively, prevent and reverse mast cell dependent visceral hypersensitivity in a rat model of neonatal maternal separation.

Collaboration


Dive into the Mira M. Wouters's collaboration.

Top Co-Authors

Avatar

Guy E. Boeckxstaens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Dafne Balemans

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Morgane Florens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jean-Marie Vanderwinden

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Stephanie Mondelaers

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter T. Schmidt

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Aldona Dlugosz

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Greger Lindberg

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge