Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mira V. Han is active.

Publication


Featured researches published by Mira V. Han.


Nature | 2007

Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures

Alexander Stark; Michael F. Lin; Pouya Kheradpour; Jakob Skou Pedersen; Leopold Parts; Joseph W. Carlson; Madeline A. Crosby; Matthew D. Rasmussen; Sushmita Roy; Ameya N. Deoras; J. Graham Ruby; Julius Brennecke; Harvard FlyBase curators; Berkeley Drosophila Genome; Emily Hodges; Angie S. Hinrichs; Anat Caspi; Benedict Paten; Seung-Won Park; Mira V. Han; Morgan L. Maeder; Benjamin J. Polansky; Bryanne E. Robson; Stein Aerts; Jacques van Helden; Bassem A. Hassan; Donald G. Gilbert; Deborah A. Eastman; Michael D. Rice; Michael Weir

Sequencing of multiple related species followed by comparative genomics analysis constitutes a powerful approach for the systematic understanding of any genome. Here, we use the genomes of 12 Drosophila species for the de novo discovery of functional elements in the fly. Each type of functional element shows characteristic patterns of change, or ‘evolutionary signatures’, dictated by its precise selective constraints. Such signatures enable recognition of new protein-coding genes and exons, spurious and incorrect gene annotations, and numerous unusual gene structures, including abundant stop-codon readthrough. Similarly, we predict non-protein-coding RNA genes and structures, and new microRNA (miRNA) genes. We provide evidence of miRNA processing and functionality from both hairpin arms and both DNA strands. We identify several classes of pre- and post-transcriptional regulatory motifs, and predict individual motif instances with high confidence. We also study how discovery power scales with the divergence and number of species compared, and we provide general guidelines for comparative studies.


PLOS Genetics | 2007

Gene family evolution across 12 Drosophila genomes.

Matthew W. Hahn; Mira V. Han; Sang-Gook Han

Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and loss of genes at unprecedented resolution. We find large numbers of both gains and losses, with over 40% of all gene families differing in size among the Drosophila. Approximately 17 genes are estimated to be duplicated and fixed in a genome every million years, a rate on par with that previously found in both yeast and mammals. We find many instances of extreme expansions or contractions in the size of gene families, including the expansion of several sex- and spermatogenesis-related families in D. melanogaster that also evolve under positive selection at the nucleotide level. Newly evolved gene families in our dataset are associated with a class of testes-expressed genes known to have evolved de novo in a number of cases. Gene family comparisons also allow us to identify a number of annotated D. melanogaster genes that are unlikely to encode functional proteins, as well as to identify dozens of previously unannotated D. melanogaster genes with conserved homologs in the other Drosophila. Taken together, our results demonstrate that the apparent stasis in total gene number among species has masked rapid turnover in individual gene gain and loss. It is likely that this genomic revolving door has played a large role in shaping the morphological, physiological, and metabolic differences among species.


Genome Research | 2009

Adaptive evolution of young gene duplicates in mammals

Mira V. Han; Jeffery P. Demuth; Casey L. McGrath; Claudio Casola; Matthew W. Hahn

Duplicate genes act as a source of genetic material from which new functions arise. They exist in large numbers in every sequenced eukaryotic genome and may be responsible for many differences in phenotypes between species. However, recent work searching for the targets of positive selection in humans has largely ignored duplicated genes due to complications in orthology assignment. Here we find that a high proportion of young gene duplicates in the human, macaque, mouse, and rat genomes have experienced adaptive natural selection. Approximately 10% of all lineage-specific duplicates show evidence for positive selection on their protein sequences, larger than any reported amount of selection among single-copy genes in these lineages using similar methods. We also find that newly duplicated genes that have been transposed to new chromosomal locations are significantly more likely to have undergone positive selection than the ancestral copy. Human-specific duplicates evolving under adaptive natural selection include a surprising number of genes involved in neuronal and cognitive functions. Our results imply that genome scans for selection that ignore duplicated loci are missing a large fraction of all adaptive substitutions. The results are also in agreement with the classical model of evolution by gene duplication, supporting a common role for neofunctionalization in the long-term maintenance of gene duplicates.


Molecular Biology and Evolution | 2013

Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3

Mira V. Han; Gregg W.C. Thomas; Jose Lugo-Martinez; Matthew W. Hahn

Current sequencing methods produce large amounts of data, but genome assemblies constructed from these data are often fragmented and incomplete. Incomplete and error-filled assemblies result in many annotation errors, especially in the number of genes present in a genome. This means that methods attempting to estimate rates of gene duplication and loss often will be misled by such errors and that rates of gene family evolution will be consistently overestimated. Here, we present a method that takes these errors into account, allowing one to accurately infer rates of gene gain and loss among genomes even with low assembly and annotation quality. The method is implemented in the newest version of the software package CAFE, along with several other novel features. We demonstrate the accuracy of the method with extensive simulations and reanalyze several previously published data sets. Our results show that errors in genome annotation do lead to higher inferred rates of gene gain and loss but that CAFE 3 sufficiently accounts for these errors to provide accurate estimates of important evolutionary parameters.


Evolution | 2011

DEVELOPMENTAL DECOUPLING OF ALTERNATIVE PHENOTYPES: INSIGHTS FROM THE TRANSCRIPTOMES OF HORN-POLYPHENIC BEETLES

Emilie C. Snell-Rood; Amy Cash; Mira V. Han; Teiya Kijimoto; Justen Andrews; Armin P. Moczek

Developmental mechanisms play an important role in determining the costs, limits, and evolutionary consequences of phenotypic plasticity. One issue central to these claims is the hypothesis of developmental decoupling, where alternate morphs result from evolutionarily independent developmental pathways. We address this assumption through a microarray study that tests whether differences in gene expression between alternate morphs are as divergent as those between sexes, a classic example of developmental decoupling. We then examine whether genes with morph‐biased expression are less conserved than genes with shared expression between morphs, as predicted if developmental decoupling relaxes pleiotropic constraints on divergence. We focus on the developing horns and brains of two species of horned beetles with impressive sexual‐ and morph‐dimorphism in the expression of horns and fighting behavior. We find that patterns of gene expression were as divergent between morphs as they were between sexes. However, overall patterns of gene expression were also highly correlated across morphs and sexes. Morph‐biased genes were more evolutionarily divergent, suggesting a role of relaxed pleiotropic constraints or relaxed selection. Together these results suggest that alternate morphs are to some extent developmentally decoupled, and that this decoupling has significant evolutionary consequences. However, alternative morphs may not be as developmentally decoupled as sometimes assumed and such hypotheses of development should be revisited and refined.


Genome Biology and Evolution | 2009

A complex suite of forces drives gene traffic from Drosophila X chromosomes.

Richard P. Meisel; Mira V. Han; Matthew W. Hahn

Theoretical studies predict X chromosomes and autosomes should be under different selection pressures, and there should therefore be differences in sex-specific and sexually antagonistic gene content between the X and the autosomes. Previous analyses have identified an excess of genes duplicated by retrotransposition from the X chromosome in Drosophila melanogaster. A number of hypotheses may explain this pattern, including mutational bias, escape from X-inactivation during spermatogenesis, and the movement of male-favored (sexually antagonistic) genes from a chromosome that is predominantly carried by females. To distinguish among these processes and to examine the generality of these patterns, we identified duplicated genes in nine sequenced Drosophila genomes. We find that, as in D. melanogaster, there is an excess of genes duplicated from the X chromosome across the genus Drosophila. This excess duplication is due almost completely to genes duplicated by retrotransposition, with little to no excess from the X among genes duplicated via DNA intermediates. The only exception to this pattern appears within the burst of duplication that followed the creation of the Drosophila pseudoobscura neo-X chromosome. Additionally, we examined genes relocated among chromosomal arms (i.e., genes duplicated to new locations coupled with the loss of the copy in the ancestral locus) and found an excess of genes relocated off the ancestral X and neo-X chromosomes. Interestingly, many of the same genes were duplicated or relocated from the independently derived neo-X chromosomes of D. pseudoobscura and Drosophila willistoni, suggesting that natural selection favors the traffic of genes from X chromosomes. Overall, we find that the forces driving gene duplication from X chromosomes are dependent on the lineage in question, the molecular mechanism of duplication considered, the preservation of the ancestral copy, and the age of the X chromosome.


Evolution | 2010

THE CONTRIBUTION OF GENE MOVEMENT TO THE "TWO RULES OF SPECIATION"

Leonie C. Moyle; Christopher D. Muir; Mira V. Han; Matthew W. Hahn

The two “rules of speciation”—the Large X‐effect and Haldanes rule—hold throughout the animal kingdom, but the underlying genetic mechanisms that cause them are still unclear. Two predominant explanations—the “dominance theory” and faster male evolution—both have some empirical support, suggesting that the genetic basis of these rules is likely multifarious. We revisit one historical explanation for these rules, based on dysfunctional genetic interactions involving genes recently moved between chromosomes. We suggest that gene movement specifically off or onto the X chromosome is another mechanism that could contribute to the two rules, especially as X chromosome movements can be subject to unique sex‐specific and sex chromosome specific consequences in hybrids. Our hypothesis is supported by patterns emerging from comparative genomic data, including a strong bias in interchromosomal gene movements involving the X and an overrepresentation of male reproductive functions among chromosomally relocated genes. In addition, our model indicates that the contribution of gene movement to the two rules in any specific group will depend upon key developmental and reproductive parameters that are taxon specific. We provide several testable predictions that can be used to assess the importance of gene movement as a contributor to these rules in the future.


BMC Genomics | 2010

Metabolic flexibility revealed in the genome of the cyst-forming α-1 proteobacterium Rhodospirillum centenum

Yih-Kuang Lu; Jeremiah N. Marden; Mira V. Han; Wesley D. Swingley; Stephen D. Mastrian; Sugata Roy Chowdhury; Jicheng Hao; Tamer Helmy; Sun Kim; Ahmet Kurdoglu; Heather J. Matthies; David Rollo; Paul Stothard; Robert E. Blankenship; Carl E. Bauer; Jeffrey W. Touchman

BackgroundRhodospirillum centenum is a photosynthetic non-sulfur purple bacterium that favors growth in an anoxygenic, photosynthetic N2-fixing environment. It is emerging as a genetically amenable model organism for molecular genetic analysis of cyst formation, photosynthesis, phototaxis, and cellular development. Here, we present an analysis of the genome of this bacterium.ResultsR. centenum contains a singular circular chromosome of 4,355,548 base pairs in size harboring 4,105 genes. It has an intact Calvin cycle with two forms of Rubisco, as well as a gene encoding phosphoenolpyruvate carboxylase (PEPC) for mixotrophic CO2 fixation. This dual carbon-fixation system may be required for regulating internal carbon flux to facilitate bacterial nitrogen assimilation. Enzymatic reactions associated with arsenate and mercuric detoxification are rare or unique compared to other purple bacteria. Among numerous newly identified signal transduction proteins, of particular interest is a putative bacteriophytochrome that is phylogenetically distinct from a previously characterized R. centenum phytochrome, Ppr. Genes encoding proteins involved in chemotaxis as well as a sophisticated dual flagellar system have also been mapped.ConclusionsRemarkable metabolic versatility and a superior capability for photoautotrophic carbon assimilation is evident in R. centenum.


Genetics | 2012

Inferring the History of Interchromosomal Gene Transposition in Drosophila Using n -Dimensional Parsimony

Mira V. Han; Matthew W. Hahn

Gene transposition puts a new gene copy in a novel genomic environment. Moreover, genes moving between the autosomes and the X chromosome experience change in several evolutionary parameters. Previous studies of gene transposition have not utilized the phylogenetic framework that becomes possible with the availability of whole genomes from multiple species. Here we used parsimonious reconstruction on the genomic distribution of gene families to analyze interchromosomal gene transposition in Drosophila. We identified 782 genes that have moved chromosomes within the phylogeny of 10 Drosophila species, including 87 gene families with multiple independent movements on different branches of the phylogeny. Using this large catalog of transposed genes, we detected accelerated sequence evolution in duplicated genes that transposed when compared to the parental copy at the original locus. We also observed a more refined picture of the biased movement of genes from the X chromosome to the autosomes. The bias of X-to-autosome movement was significantly stronger for RNA-based movements than for DNA-based movements, and among DNA-based movements there was an excess of genes moving onto the X chromosome as well. Genes involved in female-specific functions moved onto the X chromosome while genes with male-specific functions moved off the X. There was a significant overrepresentation of proteins involving chromosomal function among transposed genes, suggesting that genetic conflict between sexes and among chromosomes may be a driving force behind gene transposition in Drosophila.


Molecular Biology and Evolution | 2017

Genomics of Parallel Experimental Evolution in Drosophila

Joseph L. Graves; K. L. Hertweck; Mark A. Phillips; Mira V. Han; Larry G. Cabral; Thomas T. Barter; L.F. Greer; M. K. Burke; Laurence D. Mueller; Michael R. Rose

Abstract What are the genomic foundations of adaptation in sexual populations? We address this question using fitness–character and whole-genome sequence data from 30 Drosophila laboratory populations. These 30 populations are part of a nearly 40-year laboratory radiation featuring 3 selection regimes, each shared by 10 populations for up to 837 generations, with moderately large effective population sizes. Each of 3 sets of the 10 populations that shared a selection regime consists of 5 populations that have long been maintained under that selection regime, paired with 5 populations that had only recently been subjected to that selection regime. We find a high degree of evolutionary parallelism in fitness phenotypes when most-recent selection regimes are shared, as in previous studies from our laboratory. We also find genomic parallelism with respect to the frequencies of single-nucleotide polymorphisms, transposable elements, insertions, and structural variants, which was expected. Entirely unexpected was a high degree of parallelism for linkage disequilibrium. The evolutionary genetic changes among these sexual populations are rapid and genomically extensive. This pattern may be due to segregating functional genetic variation that is abundantly maintained genome-wide by selection, variation that responds immediately to changes of selection regime.

Collaboration


Dive into the Mira V. Han's collaboration.

Top Co-Authors

Avatar

Matthew W. Hahn

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Ahmet Kurdoglu

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Carl E. Bauer

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

David Rollo

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Heather J. Matthies

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremiah N. Marden

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Jicheng Hao

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Robert E. Blankenship

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Stephen D. Mastrian

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge