Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miranda E.M.C. Christianen is active.

Publication


Featured researches published by Miranda E.M.C. Christianen.


Radiotherapy and Oncology | 2012

Predictive modelling for swallowing dysfunction after primary (chemo)radiation: Results of a prospective observational study

Miranda E.M.C. Christianen; Cornelis Schilstra; Ivo Beetz; Christina T. Muijs; Olga Chouvalova; Fred R. Burlage; P. Doornaert; Phil W. Koken; C. René Leemans; Rico N. P. M. Rinkel; Marieke J. de Bruijn; G. H. de Bock; Jan Roodenburg; Bernard F. A. M. van der Laan; Ben J. Slotman; Irma M. Verdonck-de Leeuw; Hendrik P. Bijl; Johannes A. Langendijk

BACKGROUND AND PURPOSE The purpose of this large multicentre prospective cohort study was to identify which dose volume histogram parameters and pre-treatment factors are most important to predict physician-rated and patient-rated radiation-induced swallowing dysfunction (RISD) in order to develop predictive models for RISD after curative (chemo) radiotherapy ((CH) RT). MATERIAL AND METHODS The study population consisted of 354 consecutive head and neck cancer patients treated with (CH) RT. The primary endpoint was grade 2 or more swallowing dysfunction according to the RTOG/EORTC late radiation morbidity scoring criteria at 6 months after (CH) RT. The secondary endpoints were patient-rated swallowing complaints as assessed with the EORTC QLQ-H&N35 questionnaire. To select the most predictive variables a multivariate logistic regression analysis with bootstrapping was used. RESULTS At 6 months after (CH) RT the bootstrapping procedure revealed that a model based on the mean dose to the superior pharyngeal constrictor muscle (PCM) and mean dose to the supraglottic larynx was most predictive. For the secondary endpoints different predictive models were found: for problems with swallowing liquids the most predictive factors were the mean dose to the supraglottic larynx and radiation technique (3D-CRT versus IMRT). For problems with swallowing soft food the mean dose to the middle PCM, age (18-65 versus >65 years), tumour site (naso/oropharynx versus other sites) and radiation technique (3D-CRT versus IMRT) were the most predictive factors. For problems with swallowing solid food the most predictive factors were the mean dose to the superior PCM, the mean dose to the supraglottic larynx and age (18-65 versus >65 years). And for choking when swallowing the V60 of the oesophageal inlet muscle and the mean dose to the supraglottic larynx were the most predictive factors. CONCLUSIONS Physician-rated and patient-rated RISD in head and neck cancer patients treated with (CH) RT cannot be predicted with univariate relationships between the dose distribution in a single organ at risk and an endpoint. Separate predictive models are needed for different endpoints and factors other than dose volume histogram parameters are important as well.


Radiotherapy and Oncology | 2011

Delineation of organs at risk involved in swallowing for radiotherapy treatment planning

Miranda E.M.C. Christianen; Johannes A. Langendijk; Henriette E. Westerlaan; Tara A. van de Water; Hendrik P. Bijl

BACKGROUND AND PURPOSE Radiotherapy, alone or combined with chemotherapy, is a treatment modality used frequently in head and neck cancer. In order to report, compare and interpret the sequelae of radiation treatment adequately, it is important to delineate organs at risk (OARs) according to well-defined and uniform guidelines. The aim of this paper was to present our institutional Computed Tomography (CT)-based delineation guidelines for organs in the head and neck at risk for radiation-induced swallowing dysfunction (SWOARs). MATERIAL AND METHODS After analyses of the human anatomy of the head and neck area and literature review, CT-based guidelines for delineation of the most relevant SWOARs were described by a panel of experts. RESULTS AND CONCLUSIONS This paper described institutional guidelines for the delineation of potential SWOARs, accompanied by CT-based illustrations presenting examples of the delineated structures and their corresponding anatomic borders. This paper is essential to ensure adequate interpretation of future reports on the relationship between dose distribution in these SWOARs and different aspects of post-treatment swallowing dysfunction.


Radiotherapy and Oncology | 2012

NTCP models for patient-rated xerostomia and sticky saliva after treatment with intensity modulated radiotherapy for head and neck cancer: The role of dosimetric and clinical factors

Ivo Beetz; Cornelis Schilstra; Arjen van der Schaaf; Edwin R. van den Heuvel; P. Doornaert; Peter van Luijk; Arjan Vissink; Bernard F. A. M. van der Laan; Charles R. Leemans; H.P. Bijl; Miranda E.M.C. Christianen; Roel J.H.M. Steenbakkers; Johannes A. Langendijk

PURPOSE The purpose of this multicentre prospective study was to develop multivariable logistic regression models to make valid predictions about the risk of moderate-to-severe patient-rated xerostomia (XER(M6)) and sticky saliva 6 months (STIC(M6)) after primary treatment with intensity modulated radiotherapy (IMRT) with or without chemotherapy for head and neck cancer (HNC). METHODS AND MATERIALS The study population was composed of 178 consecutive HNC patients treated with IMRT. All patients were included in a standard follow up programme in which acute and late side effects and quality of life were prospectively assessed, prior to, during and after treatment. The primary endpoints were XER(M6) and STIC(M6) as assessed by the EORTC QLQ-H&N35 after completing IMRT. Organs at risk (OARs) potentially involved in salivary function were delineated on planning-CT, including the parotid, submandibular and sublingual glands and the minor glands in the soft palate, cheeks and lips. Patients with moderate-to-severe xerostomia or sticky saliva, respectively, at baseline were excluded. The optimal number of variables for a multivariate logistic regression model was determined using a bootstrapping method. RESULTS Eventually, 51.6% of the cases suffered from XER(M6). The multivariate analysis showed that the mean contralateral parotid gland dose and baseline xerostomia (none vs. a bit) were the most important predictors for XER(M6). For the multivariate NTCP model, the area under the receiver operating curve (AUC) was 0.68 (95% CI 0.60-0.76) and the discrimination slope was 0.10, respectively. Calibration was good with a calibration slope of 1.0. At 6 months after IMRT, 35.6% of the cases reported STIC(M6). The mean contralateral submandibular gland dose, the mean sublingual dose and the mean dose to the minor salivary glands located in the soft palate were most predictive for STIC(M6). For this model, the AUC was 0.70 (95% CI 0.61-0.78) and the discrimination slope was 0.12. Calibration was good with a calibration slope of 1.0. CONCLUSIONS The multivariable NTCP models presented in this paper can be used to predict patient-rated xerostomia and sticky saliva. The dose volume parameters included in the models can be used to further optimise IMRT treatment.


Radiotherapy and Oncology | 2012

Development of NTCP models for head and neck cancer patients treated with three-dimensional conformal radiotherapy for xerostomia and sticky saliva : The role of dosimetric and clinical factors

Ivo Beetz; Cornelis Schilstra; Fred R. Burlage; Phil W. Koken; P. Doornaert; H.P. Bijl; Olga Chouvalova; C. René Leemans; Geertruida H. de Bock; Miranda E.M.C. Christianen; Bernard F. A. M. van der Laan; Arjan Vissink; Roel J.H.M. Steenbakkers; Johannes A. Langendijk

PURPOSE The purpose of this multicentre prospective study was to investigate the significance of the radiation dose in the major and minor salivary glands, and other pre-treatment and treatment factors, with regard to the development of patient-rated xerostomia and sticky saliva among head and neck cancer (HNC) patients treated with primary (chemo-) radiotherapy ((CH)RT). METHODS AND MATERIALS The study population was composed of 167 consecutive HNC patients treated with three-dimensional conformal (3D-CRT) (CH) RT. The primary endpoint was moderate to severe xerostomia (XER6m) as assessed by the EORTC QLQ-H&N35 at 6 months after completing (CH)RT. The secondary endpoint was moderate to severe sticky saliva at 6 months (STIC6m). All organs at risk (OARs) potentially involved in salivary function were delineated on planning-CT, including the parotid, submandibular and sublingual glands and the minor glands in the soft palate, cheeks and lips. Patients with moderate to severe xerostomia or sticky saliva at baseline were excluded. The optimum number of variables for a multivariate logistic regression model was determined using a bootstrapping method. RESULTS The multivariate analysis showed the mean parotid dose, age and baseline xerostomia (none versus a bit) to be the most important predictors for XER6m. The risk of developing xerostomia increased with age and was higher when minor baseline xerostomia was present in comparison with patients without any xerostomia complaints at baseline. Model performance was good with an area under the curve (AUC) of 0.82. For STIC6m, the mean submandibular dose, age, the mean sublingual dose and baseline sticky saliva (none versus a bit) were most predictive for sticky saliva. The risk of developing STIC6m increased with age and was higher when minor baseline sticky saliva was present in comparison with patients without any sticky saliva complaints at baseline. Model performance was good with an AUC of 0.84. CONCLUSIONS Dose distributions in the minor salivary glands in patients receiving 3D-CRT have limited significance with regard to patient-rated symptoms related to salivary dysfunction. Besides the parotid and submandibular glands, only the sublingual glands were significantly associated with sticky saliva. In addition, reliable risk estimation also requires information from other factors such as age and baseline subjective scores. When these selected factors are included in predictive models, instead of only dose volume histogram parameters, model performance can be improved significantly.


Acta Oncologica | 2013

The potential of intensity-modulated proton radiotherapy to reduce swallowing dysfunction in the treatment of head and neck cancer: A planning comparative study.

Hans Paul van der Laan; Tara A. van de Water; Heleen E. van Herpt; Miranda E.M.C. Christianen; Hendrik P. Bijl; Erik W. Korevaar; Coen R. N. Rasch; Aart A. van 't Veld; Arjen van der Schaaf; Cornelis Schilstra; Johannes A. Langendijk

Abstract Background. Predictive models for swallowing dysfunction were developed previously and showed the potential of improved intensity-modulated radiotherapy to reduce the risk of swallowing dysfunction. Still the risk is high. The aim of this study was to determine the potential of swallowing-sparing (SW) intensity-modulated proton therapy (IMPT) in head and neck cancer (HNC) for reducing the risk of swallowing dysfunction relative to currently used photon therapy. Material and methods. Twenty-five patients with oropharyngeal (n = 21) and hypopharyngeal (n = 4) cancer received primary radiotherapy, including bilateral neck irradiation, using standard (ST) intensity-modulated photon therapy (IMRT). Prophylactic (54 Gy) and therapeutic (70 Gy) target volumes were defined. The dose to the parotid and submandibular glands was reduced as much as possible. Four additional radiotherapy plans were created for each patient: SW-IMRT, ST-IMPT, 3-beam SW-IMPT (3B-SW-IMPT) and 7-beam SW-IMPT (7B-SW-IMPT). All plans were optimized similarly, with additional attempts to spare the swallowing organs at risk (SWOARs) in the SW plans. Probabilities of swallowing dysfunction were calculated with recently developed predictive models. Results. All plans complied with standard HNC radiotherapy objectives. The mean parotid gland doses were similar for the ST and SW photon plans, but clearly lower in all IMPT plans (ipsilateral parotid gland ST-IMRT: 46 Gy, 7B-SW-IMPT: 29 Gy). The mean dose in the SWOARs was lowest with SW-IMPT, in particular with 7B-SW-IMPT (supraglottic larynx ST-IMRT: 60 Gy, 7B-SW-IMPT: 40 Gy). The observed dose reductions to the SWOARs translated into substantial overall reductions in normal tissue complication risks for different swallowing dysfunction endpoints. Compared with ST-IMRT, the risk of physician-rated grade 2–4 swallowing dysfunction was reduced on average by 8.8% (95% CI 6.5–11.1%) with SW-IMRT, and by 17.2% (95% CI: 12.7–21.7%) with 7B-SW-IMPT. Conclusion. SWOAR-sparing with proton therapy has the potential to substantially reduce the risk of swallowing dysfunction compared to similar treatment with photons.


Radiotherapy and Oncology | 2012

The potential benefit of swallowing sparing intensity modulated radiotherapy to reduce swallowing dysfunction: An in silico planning comparative study

Hans Paul van der Laan; Miranda E.M.C. Christianen; Hendrik P. Bijl; Cornelis Schilstra; Johannes A. Langendijk

PURPOSE To apply recently developed predictive models for swallowing dysfunction to compare the predicted probabilities of swallowing dysfunction for standard intensity modulated radiotherapy (ST-IMRT) and swallowing sparing IMRT (SW-IMRT). MATERIALS AND METHODS Thirty head and neck cancer patients who previously underwent radiotherapy for the bilateral neck were selected for this study. For each patient, ST-IMRT and SW-IMRT simultaneous integrated boost treatment plans were created. ST-IMRT treatment plan optimisation aimed at obtaining adequate target volume coverage and sparing of the parotid and submandibular glands as much as possible. Objectives for SW-IMRT were similar, with additional objectives to spare the organs at risk related to swallowing dysfunction (SWOARs). Dose-volume data with ST-IMRT and SW-IMRT and normal tissue complication probabilities for physician-rated and patient-rated swallowing dysfunction were calculated with recently developed predictive models. RESULTS All plans had adequate target volume coverage and dose to critical organs was within accepted limits. Sparing of parotid glands was similar for ST-IMRT and SW-IMRT. With SW-IMRT, the mean dose to the various SWOARs was reduced. Absolute dose values and dose reductions with SW-IMRT differed per patient and per SWOAR and depended on N stage and tumour location. The mean reduction in predicted physician-rated Radiation Therapy Oncology Group (RTOG) grade 2-4 swallowing dysfunction was 9% (range, 3-20%). Mean reductions of the probability of patient-rated moderate to severe complaints with regard to the swallowing of solid food, soft food, liquid food and choking when swallowing were 8%, 2%, 1% and 1%, respectively. CONCLUSIONS New predictive models for swallowing dysfunction were applied to show potential reductions in physician and patient-rated swallowing dysfunction with IMRT that was specifically optimised to spare SWOARs.


Radiotherapy and Oncology | 2014

Development of a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence after curative radiotherapy/chemo-radiotherapy in head and neck cancer

K. Wopken; Hendrik P. Bijl; Arjen van der Schaaf; Hans Paul van der Laan; Olga Chouvalova; Roel J.H.M. Steenbakkers; P. Doornaert; Ben J. Slotman; Sjoukje F. Oosting; Miranda E.M.C. Christianen; Bernard F. A. M. van der Laan; Jan Roodenburg; C. René Leemans; Irma M. Verdonck-de Leeuw; Johannes A. Langendijk

BACKGROUND AND PURPOSE Curative radiotherapy/chemo-radiotherapy for head and neck cancer (HNC) may result in severe acute and late side effects, including tube feeding dependence. The purpose of this prospective cohort study was to develop a multivariable normal tissue complication probability (NTCP) model for tube feeding dependence 6 months (TUBEM6) after definitive radiotherapy, radiotherapy plus cetuximab or concurrent chemoradiation based on pre-treatment and treatment characteristics. MATERIALS AND METHODS The study included 355 patients with HNC. TUBEM6 was scored prospectively in a standard follow-up program. To design the prediction model, the penalized learning method LASSO was used, with TUBEM6 as the endpoint. RESULTS The prevalence of TUBEM6 was 10.7%. The multivariable model with the best performance consisted of the variables: advanced T-stage, moderate to severe weight loss at baseline, accelerated radiotherapy, chemoradiation, radiotherapy plus cetuximab, the mean dose to the superior and inferior pharyngeal constrictor muscle, to the contralateral parotid gland and to the cricopharyngeal muscle. CONCLUSIONS We developed a multivariable NTCP model for TUBEM6 to identify patients at risk for tube feeding dependence. The dosimetric variables can be used to optimize radiotherapy treatment planning aiming at prevention of tube feeding dependence and to estimate the benefit of new radiation technologies.


International Journal of Radiation Oncology Biology Physics | 2012

A Prospective Cohort Study on Radiation-induced Hypothyroidism: Development of an NTCP Model

Marjolein J. Boomsma; Hendrik P. Bijl; Miranda E.M.C. Christianen; Ivo Beetz; Olga Chouvalova; Roel J.H.M. Steenbakkers; Bernard F. A. M. van der Laan; Bruce H. R. Wolffenbuttel; Sjoukje F. Oosting; Cornelis Schilstra; Johannes A. Langendijk

PURPOSE To establish a multivariate normal tissue complication probability (NTCP) model for radiation-induced hypothyroidism. METHODS AND MATERIALS The thyroid-stimulating hormone (TSH) level of 105 patients treated with (chemo-) radiation therapy for head-and-neck cancer was prospectively measured during a median follow-up of 2.5 years. Hypothyroidism was defined as elevated serum TSH with decreased or normal free thyroxin (T4). A multivariate logistic regression model with bootstrapping was used to determine the most important prognostic variables for radiation-induced hypothyroidism. RESULTS Thirty-five patients (33%) developed primary hypothyroidism within 2 years after radiation therapy. An NTCP model based on 2 variables, including the mean thyroid gland dose and the thyroid gland volume, was most predictive for radiation-induced hypothyroidism. NTCP values increased with higher mean thyroid gland dose (odds ratio [OR]: 1.064/Gy) and decreased with higher thyroid gland volume (OR: 0.826/cm(3)). Model performance was good with an area under the curve (AUC) of 0.85. CONCLUSIONS This is the first prospective study resulting in an NTCP model for radiation-induced hypothyroidism. The probability of hypothyroidism rises with increasing dose to the thyroid gland, whereas it reduces with increasing thyroid gland volume.


Acta Oncologica | 2014

The QUANTEC criteria for parotid gland dose and their efficacy to prevent moderate to severe patient-rated xerostomia

Ivo Beetz; Roel J.H.M. Steenbakkers; Olga Chouvalova; Charles R. Leemans; P. Doornaert; Bernard F. A. M. van der Laan; Miranda E.M.C. Christianen; Arjan Vissink; H.P. Bijl; Peter van Luijk; Johannes A. Langendijk

Abstract Background. Recently, the Quantitative Analysis of Normal Tissue Effect in the Clinic (QUANTEC) Group defined dose-volume constraints for the parotid glands to avoid severe xerostomia. The aim of this study was to determine if application of these QUANTEC criteria also protected against moderate-to-severe patient-rated xerostomia. Material and methods. The study population consisted of 307 head and neck cancer patients treated with primary (chemo)radiotherapy, either with 3D-CRT (56%) or with IMRT (44%). All patients participated in a standard follow-up program in which radiation-induced toxicity and quality of life were prospectively assessed. Patients who met the QUANTEC criteria were classified as low risk and otherwise as high risk. Results. In total, 41% of the patients (treated with 3D-CRT and IMRT) were classified as low risk patients. In the group treated with 3D-CRT and IMRT, it was possible to meet the QUANTEC criteria in 47% and 32% of the patients, respectively. Sparing the parotid glands with IMRT was considerably more difficult in patients with lymph node metastases and in patients with nasopharyngeal and oropharyngeal tumours. Low risk patients reported significantly less moderate-to-severe xerostomia than high risk patients. However, the predicted risk of elderly patients and patients with pre-existing minor patient-rated xerostomia at baseline was > 20%, even when the QUANTEC criteria were met. Conclusions. Significantly lower rates of radiation-induced patient-rated xerostomia were found among low risk patients treated according to the QUANTEC criteria, but these criteria do not completely protect against xerostomia. Particularly in elderly patients and patients already suffering from minor xerostomia at baseline, the QUANTEC criteria do not sufficiently protect against persistent, moderate-to-severe patient-rated xerostomia.


Radiotherapy and Oncology | 2013

Swallowing-sparing intensity-modulated radiotherapy for head and neck cancer patients: treatment planning optimization and clinical introduction.

Hans Paul van der Laan; A. Gawryszuk; Miranda E.M.C. Christianen; Roel J.H.M. Steenbakkers; Erik W. Korevaar; Olga Chouvalova; K. Wopken; Hendrik P. Bijl; Johannes A. Langendijk

PURPOSE To report on the potential benefits of swallowing-sparing intensity-modulated radiation therapy (SW-IMRT) in the first 100 SW-IMRT treated patients, as well as on the factors that influence the potential benefit of SW-IMRT relative to standard parotid sparing (ST)-IMRT. MATERIAL AND METHODS One hundred consecutive head and neck cancer patients, scheduled for primary radiotherapy, were included in this prospective cohort study. For each patient, ST-IMRT and SW-IMRT treatment plans were created. All patients were eventually treated with SW-IMRT. Objectives for SW-IMRT were identical to those with ST-IMRT, with additional objectives to spare the swallowing organs at risk (SWOARs). After 20 patients, interim results were evaluated by a multidisciplinary committee. RESULTS The mean gain of SW-IMRT relative to ST-IMRT in the first 20 patients was less than expected based on our previous planning comparative study. A critical review of all plans revealed that the results with SW-IMRT could be improved by: (1) gaining experience and attempting to reduce SWOAR dose as much as possible; (2) accepting a moderate shift of dose to unspecified tissues; (3) maximizing SWOAR sparing while keeping PTV coverage exactly according to protocol. In the additional 80 patients, the mean dose to the various SWOARs was further reduced significantly compared to ST-IMRT. Dose reductions with SW-IMRT were largest for patients who received neck irradiation, had a tumour located in the larynx, oropharynx, nasopharynx or oral cavity, and had <75% overlap between SWOARs and PTVs. The mean absolute reduction in predicted physician-rated RTOG grade 2-4 swallowing dysfunction for patients numbered 21-100 was 6.1%, ranging from 0.0% to 17.2%. CONCLUSIONS The benefit of SW-IMRT depends significantly on neck radiotherapy, tumour site and the amount of overlap between SWOARs and PTVs. Optimal clinical introduction requires a detailed evaluation and comparison between the standard (ST-IMRT) and new technique (SW-IMRT) in order to fully exploit the potential benefits.

Collaboration


Dive into the Miranda E.M.C. Christianen's collaboration.

Top Co-Authors

Avatar

Johannes A. Langendijk

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Roel J.H.M. Steenbakkers

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Olga Chouvalova

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

H.P. Bijl

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

P. Doornaert

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cornelis Schilstra

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Ivo Beetz

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Hendrik P. Bijl

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Sjoukje F. Oosting

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Ben J. Slotman

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge