Miranda Fischer
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miranda Fischer.
Science | 2013
Scott G. Hansen; Jonah B. Sacha; Colette M. Hughes; Julia C. Ford; Benjamin J. Burwitz; Isabel Scholz; Roxanne M. Gilbride; Matthew S. Lewis; Awbrey N. Gilliam; Abigail B. Ventura; Daniel Malouli; Guangwu Xu; Rebecca Richards; Nathan Whizin; Jason S. Reed; Katherine B. Hammond; Miranda Fischer; John M. Turner; Alfred W. Legasse; Michael K. Axthelm; Paul T. Edlefsen; Jay A. Nelson; Jeffrey D. Lifson; Klaus Früh; Louis J. Picker
Introduction CD8+ T cell responses focus on a small fraction of total pathogen-encoded peptides, which are similar among individuals with shared major histocompatibility complex (MHC) alleles. This focus can limit immune control of genetically flexible pathogens, such as HIV and SIV, because CD8+ T cells in most infected subjects do not target sequences required for pathogen fitness, resulting in viral escape. Although a vaccine capable of broadening or redirecting CD8+ T cell epitope targeting to prevent viral escape would be highly advantageous, it remains unclear whether this targeting can be diverted from its default pattern during priming. Fibroblast-adapted RhCMV/gag vectors elicit MHC class II–restricted CD8+ T cells, greatly expanding the breadth of the response. (Top) Differential inhibition of SIVgag-specific CD8+ T cells from SIV+, fibroblast-adapted RhCMV/gag vector–vaccinated, and tropism-repaired RhCMV/gag vector–vaccinated rhesus macaques by MHC-I versus MHC-II blockade. (Bottom) Responses to consecutive SIVgag 15mer peptides in the indicated animals, classified by sensitivity to MHC-I versus MHC-II blockade. Methods We used intracellular cytokine analysis to compare the epitope targeting of SIV-specific CD8+ T cell responses in rhesus macaques with controlled SIV infection or after vaccination with either conventional SIV vaccines or rhesus cytomegalovirus (RhCMV) vectors. RhCMV vectors have been associated with stringent control of SIV challenge in the absence of protective MHC alleles. Results Fibroblast-adapted RhCMV/SIV vectors elicited SIV-specific CD8+ T cells that failed to target any canonical epitopes associated with SIV infection or conventional SIV vaccination. Instead, they recognized distinct epitopes characterized by extraordinary breadth (greater than that of conventional vaccines by a factor of >3), MHC class II (MHC-II) restriction (63% of epitopes), and high promiscuity (epitopes common to most or all responses in vaccinated macaques). These unconventionally targeted CD8+ T cell responses recognized autologous SIV-infected cells, indicating that processing and presentation of the unconventional epitopes is CMV-independent. However, CMV gene expression was responsible for directing epitope specificity of CD8+ T cells during priming. The induction of canonical SIV epitope–specific CD8+ T cell responses was specifically suppressed by expression of the Rh189/US11 gene, and the promiscuous MHC-I– and MHC-II–restricted CD8+ T cell responses occurred only in the absence of the Rh157.4–.6/UL128–131 genes involved in CMV tropism for nonfibroblasts. Discussion These findings suggest that CD8+ T cell recognition is more flexible than had been thought, and that the focused epitope recognition profiles of conventional CD8+ T cell responses may be primarily restricted by immunoregulation during priming (which can be subverted by CMV) rather than by intrinsic limitations in antigen processing/presentation or in T cell receptor repertoire. The ability of CMVs with different genetic modifications to differentially elicit CD8+ T cell responses with divergent patterns of epitope recognition raises the possibility of a CMV vector–based vaccine platform with programmable CD8+ T cell epitope targeting, including vectors that can selectively elicit CD8+ T cell responses targeting conventional or unconventional epitopes. Because the latter would be unaffected by escape mutations arising during natural infection, these vectors would be well suited for therapeutic vaccine applications. CMV Breaks All the Rules One vaccine strategy being pursued against HIV is to generate protection that is dependent on cell-mediated, rather than humoral, immune responses. A cytomegalovirus (CMV)–vectored vaccine that expresses simian immunodeficiency virus (SIV) antigens exhibits stringent and durable viral control upon SIV challenge in approximately half of vaccinated rhesus macaques. Hansen et al. (10.1126/science.1237874, see the Perspective by Goonetilleke and McMichael) sought to determine the basis for the protection and discovered that the CD8+ T cell response in vaccinated monkeys does not target canonical SIV epitopes, which SIV is known to escape, but rather generates a broad, promiscuous response. A vaccine that uses one virus to deliver components of a second virus elicits T cells that recognize noncanonical epitopes. [Also see Perspective by Goonetilleke and McMichael] CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein–expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope–specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I– and class II–restricted CD8+ T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Ilhem Messaoudi; Jessica Warner; Miranda Fischer; Buyng Park; Brenna J. Hill; Julie A. Mattison; Mark A. Lane; George S. Roth; Donald K. Ingram; Louis J. Picker; Motomi Mori; Janko Nikolich-Žugich
Caloric restriction (CR) has long been known to increase median and maximal lifespans and to decreases mortality and morbidity in short-lived animal models, likely by altering fundamental biological processes that regulate aging and longevity. In rodents, CR was reported to delay the aging of the immune system (immune senescence), which is believed to be largely responsible for a dramatic increase in age-related susceptibility to infectious diseases. However, it is unclear whether CR can exert similar effects in long-lived organisms. Previous studies involving 2- to 4-year CR treatment of long-lived primates failed to find a CR effect or reported effects on the immune system opposite to those seen in CR-treated rodents. Here we show that long-term CR delays the adverse effects of aging on nonhuman primate T cells. CR effected a marked improvement in the maintenance and/or production of naïve T cells and the consequent preservation of T cell receptor repertoire diversity. Furthermore, CR also improved T cell function and reduced production of inflammatory cytokines by memory T cells. Our results provide evidence that CR can delay immune senescence in nonhuman primates, potentially contributing to an extended lifespan by reducing susceptibility to infectious disease.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Luka Čičin-Šain; Ilhem Messaoudi; Byung Park; Noreen Currier; Shannon L. Planer; Miranda Fischer; Shane Tackitt; Dragana Nikolich-Žugich; Alfred W. Legasse; Michael K. Axthelm; Louis J. Picker; Motomi Mori; Janko Nikolich-Žugich
The loss of naïve T cells is a hallmark of immune aging. Although thymic involution is a primary driver of this naïve T cell loss, less is known about the contribution of other mechanisms to the depletion of naïve T cells in aging primates. We examined the role of homeostatic cycling and proliferative expansion in different T cell subsets of aging rhesus macaques (RM). BrdU incorporation and the expression of the G1-M marker Ki-67 were elevated in peripheral naïve CD4 and even more markedly in the naïve CD8 T cells of old, but not young adult, RM. Proliferating naïve cells did not accumulate in old animals. Rather, the relative size of the naïve CD8 T cell compartment correlated inversely to its proliferation rate. Likewise, T cell receptor diversity decreased in individuals with elevated naïve CD8 T cell proliferation. This apparent contradiction was explained by a significant increase in turnover concomitant with the naïve pool loss. The turnover increased exponentially when the naïve CD8 T cell pool decreased below 4% of total blood CD8 cells. These results link the shrinking naïve T cell pool with a dramatic increase in homeostatic turnover, which has the potential to exacerbate the progressive exhaustion of the naïve pool and constrict the T cell repertoire. Thus, homeostatic T cell proliferation exhibits temporal antagonistic pleiotropy, being beneficial to T cell maintenance in adulthood but detrimental to the long-term T cell maintenance in aging individuals.
Journal of Immunology | 2010
Luka Čičin-Šain; Sue Smyk-Paerson; Noreen Currier; Laura Byrd; Caroline W. Koudelka; Tammie Robinson; Gwendolyn Swarbrick; Shane Tackitt; Alfred W. Legasse; Miranda Fischer; Dragana Nikolich-Žugich; Byung Park; Theodore Hobbs; Cynthia J. Doane; Motomi Mori; Michael T. Axthelm; Deborah A. Lewinsohn; Janko Nikolich-Žugich
Aging is usually accompanied by diminished immune protection upon infection or vaccination. Although aging results in well-characterized changes in the T cell compartment of long-lived, outbred, and pathogen-exposed organisms, their relevance for primary Ag responses remain unclear. Therefore, it remains unclear whether and to what extent the loss of naive T cells, their partial replacement by oligoclonal memory populations, and the consequent constriction of TCR repertoire limit the Ag responses in aging primates. We show in this study that aging rhesus monkeys (Macaca mulatta) exhibit poor CD8 T cell and B cell responses in the blood and poor CD8 responses in the lungs upon vaccination with the modified vaccinia strain Ankara. The function of APCs appeared to be maintained in aging monkeys, suggesting that the poor response was likely intrinsic to lymphocytes. We found that the loss of naive CD4 and CD8 T cells, and the appearance of persisting T cell clonal expansions predicted poor CD8 responses in individual monkeys. There was strong correlation between early CD8 responses in the transitory CD28+ CD62L− CD8+ T cell compartment and the peak Ab titers upon boost in individual animals, as well as a correlation of both parameters of immune response to the frequency of naive CD8+ T cells in old but not in adult monkeys. Therefore, our results argue that T cell repertoire constriction and naive cell loss have prognostic value for global immune function in aging primates.
Journal of Immunology | 2006
Ilhem Messaoudi; Jessica Warner; Dragana Nikolich-Žugich; Miranda Fischer; Janko Nikolich-Žugich
T cell aging manifests itself both at the cellular (cell-autonomous defects in signaling) and at the population (age-related dysregulation of T cell homeostasis) levels. A prominent contributor to the latter is the appearance of T cell clonal expansions (TCE), with a potential to impair immune defense. In this study, we investigated molecular, cellular, and Ag requirements for TCE development. Of the mutant mice tested, old animals lacking MHC class I exhibited 7-fold fewer TCE than controls, with a 7-fold reduction in TCE. By contrast, animals lacking only one of the MHC class I molecules (Kb or Db), or IL-7R, or devoid of T cell renewal via adult thymectomy, all exhibited significant increases in TCE incidence. This increase directly correlated to lymphopenia, increased CD8 T cell turnover and an accumulation of memory-phenotype T cells. These data suggested that homeostatic cell division in the CD8 compartment enhances the formation of TCE. Repeated immunization with peptide/adjuvant did not result in an increase in Ag-specific TCE; however, adjuvant alone increased TCE incidence. In these experiments, therefore, nonspecific and/or homeostatic proliferation was more efficient in generating TCE in mice than repeated Ag-driven stimulation, suggesting that many, if not most, TCE in specific pathogen-free laboratory mice may be Ag-independent.
Journal of Immunology | 2011
Luka Cicin-Sain; Andrew W. Sylwester; Shoko I. Hagen; Don C. Siess; Noreen Currier; Alfred W. Legasse; Miranda Fischer; Caroline W. Koudelka; Michael K. Axthelm; Janko Nikolich-Žugich; Louis J. Picker
Although CMV infection is largely benign in immunocompetent people, the specific T cell responses associated with control of this persistent virus are enormous and must be maintained for life. These responses may increase with advanced age and have been linked to an “immune risk profile” that is associated with poor immune responsiveness and increased mortality in aged individuals. Based on this association, it has been suggested that CMV-specific T cell responses might become dysfunctional with age and thereby contribute to the development of immune senescence by homeostatic disruption of other T cell populations, diminished control of CMV replication, and/or excess chronic inflammation. In this study, we use the rhesus macaque (RM) model of aging to ask whether the quantity and quality of CMV-specific T cell responses differ between healthy adult RMs and elderly RMs that manifest hallmarks of immune aging. We demonstrate that the size of the CD4+ and CD8+ CMV-specific T cell pools are similar in adult versus old RMs and show essentially identical phenotypic and functional characteristics, including a dominant effector memory phenotype, identical patterns of IFN-γ, TNF-α, and IL-2 production and cytotoxic degranulation, and comparable functional avidities of optimal epitope-specific CD8+ T cells. Most importantly, the response to and protection against an in vivo CMV challenge were identical in adult and aged RMs. These data indicate that CMV-specific T cell immunity is well maintained in old RMs and argue against a primary role for progressive dysfunction of these responses in the development of immune senescence.
PLOS Pathogens | 2011
Kristen Haberthur; Flora Engelmann; Byng Park; Alex Barron; Alfred W. Legasse; Jesse Dewane; Miranda Fischer; Amelia Kerns; Monica Brown; Ilhem Messaoudi
Primary infection with varicella zoster virus (VZV) results in varicella (more commonly known as chickenpox) after which VZV establishes latency in sensory ganglia. VZV can reactivate to cause herpes zoster (shingles), a debilitating disease that affects one million individuals in the US alone annually. Current vaccines against varicella (Varivax) and herpes zoster (Zostavax) are not 100% efficacious. Specifically, studies have shown that 1 dose of varivax can lead to breakthrough varicella, albeit rarely, in children and a 2-dose regimen is now recommended. Similarly, although Zostavax results in a 50% reduction in HZ cases, a significant number of recipients remain at risk. To design more efficacious vaccines, we need a better understanding of the immune response to VZV. Clinical observations suggest that T cell immunity plays a more critical role in the protection against VZV primary infection and reactivation. However, no studies to date have directly tested this hypothesis due to the scarcity of animal models that recapitulate the immune response to VZV. We have recently shown that SVV infection of rhesus macaques models the hallmarks of primary VZV infection in children. In this study, we used this model to experimentally determine the role of CD4, CD8 and B cell responses in the resolution of primary SVV infection in unvaccinated animals. Data presented in this manuscript show that while CD20 depletion leads to a significant delay and decrease in the antibody response to SVV, loss of B cells does not alter the severity of varicella or the kinetics/magnitude of the T cell response. Loss of CD8 T cells resulted in slightly higher viral loads and prolonged viremia. In contrast, CD4 depletion led to higher viral loads, prolonged viremia and disseminated varicella. CD4 depleted animals also had delayed and reduced antibody and CD8 T cell responses. These results are similar to clinical observations that children with agammaglobulinemia have uncomplicated varicella whereas children with T cell deficiencies are at increased risk of progressive varicella with significant complications. Moreover, our studies indicate that CD4 T cell responses to SVV play a more critical role than antibody or CD8 T cell responses in the control of primary SVV infection and suggest that one potential mechanism for enhancing the efficacy of VZV vaccines is by eliciting robust CD4 T cell responses.
Aging Cell | 2008
Ilhem Messaoudi; Miranda Fischer; Jessica Warner; Buyng Park; Julie A. Mattison; Donald K. Ingram; Thomas Totonchy; Motomi Mori; Janko Nikolich-Žugich
We have recently shown in non‐human primates that caloric restriction (CR) initiated during adulthood can delay T‐cell aging and preserve naïve CD8 and CD4 T cells into advanced age. An important question is whether CR can be initiated at any time in life, and whether age at the time of onset would modulate the beneficial effects of CR. In the current study, we evaluated the impact of CR started before puberty or during advanced age on T‐cell senescence and compared it to the effects of CR started in early adulthood. Our data demonstrate that the beneficial effects of adult‐onset CR on T‐cell aging were lost by both early and late CR onset. In fact, some of our results suggest that inappropriate initiation of CR may be harmful to the maintenance of T‐cell function. This suggests that there may be an optimal window during adulthood where CR can delay immune senescence and improve correlates of immunity in primates.
Journal of Clinical Investigation | 2014
Daniel Malouli; Scott G. Hansen; Ernesto S. Nakayasu; Emily Marshall; Colette M. Hughes; Abigail B. Ventura; Roxanne M. Gilbride; Matthew S. Lewis; Guangwu Xu; Craig N. Kreklywich; Nathan Whizin; Miranda Fischer; Alfred W. Legasse; Kasinath Viswanathan; Don C. Siess; David G. Camp; Michael K. Axthelm; Christoph A. Kahl; Victor R. DeFilippis; Richard D. Smith; Daniel N. Streblow; Louis J. Picker; Klaus Früh
The most abundantly produced virion protein in human cytomegalovirus (HCMV) is the immunodominant phosphoprotein 65 (pp65), which is frequently included in CMV vaccines. Although it is nonessential for in vitro CMV growth, pp65 displays immunomodulatory functions that support a potential role in primary and/or persistent infection. To determine the contribution of pp65 to CMV infection and immunity, we generated a rhesus CMV lacking both pp65 orthologs (RhCMVΔpp65ab). While deletion of pp65ab slightly reduced growth in vitro and increased defective particle formation, the protein composition of secreted virions was largely unchanged. Interestingly, pp65 was not required for primary and persistent infection in animals. Immune responses induced by RhCMVΔpp65ab did not prevent reinfection with rhesus CMV; however, reinfection with RhCMVΔUS2-11, which lacks viral-encoded MHC-I antigen presentation inhibitors, was prevented. Unexpectedly, induction of pp65b-specific T cells alone did not protect against RhCMVΔUS2-11 challenge, suggesting that T cells targeting multiple CMV antigens are required for protection. However, pp65-specific immunity was crucial for controlling viral dissemination during primary infection, as indicated by the marked increase of RhCMVΔpp65ab genome copies in CMV-naive, but not CMV-immune, animals. Our data provide rationale for inclusion of pp65 into CMV vaccines but also demonstrate that pp65-induced T cell responses alone do not recapitulate the protective effect of natural infection.
Nature Medicine | 2018
Scott G. Hansen; Guangwu Xu; Julia C. Ford; Emily Marshall; Daniel Malouli; Roxanne M. Gilbride; Colette M. Hughes; Abigail B. Ventura; Emily Ainslie; Kurt T Randall; Andrea N. Selseth; Parker Rundstrom; Lauren Herlache; Matthew S. Lewis; Haesun Park; Shannon L. Planer; John M. Turner; Miranda Fischer; Christina Armstrong; Robert C Zweig; Joseph Valvo; Jackie Braun; Smitha Shankar; Lenette L. Lu; Andrew W. Sylwester; Alfred W. Legasse; Martin Messerle; Michael A. Jarvis; Lynn M. Amon; Alan Aderem
Despite widespread use of the bacille Calmette–Guérin (BCG) vaccine, tuberculosis (TB) remains a leading cause of global mortality from a single infectious agent (Mycobacterium tuberculosis or Mtb). Here, over two independent Mtb challenge studies, we demonstrate that subcutaneous vaccination of rhesus macaques (RMs) with rhesus cytomegalovirus vectors encoding Mtb antigen inserts (hereafter referred to as RhCMV/TB)—which elicit and maintain highly effector-differentiated, circulating and tissue-resident Mtb-specific CD4+ and CD8+ memory T cell responses—can reduce the overall (pulmonary and extrapulmonary) extent of Mtb infection and disease by 68%, as compared to that in unvaccinated controls, after intrabronchial challenge with the Erdman strain of Mtb at ∼1 year after the first vaccination. Fourteen of 34 RhCMV/TB-vaccinated RMs (41%) across both studies showed no TB disease by computed tomography scans or at necropsy after challenge (as compared to 0 of 17 unvaccinated controls), and ten of these RMs were Mtb-culture-negative for all tissues, an exceptional long-term vaccine effect in the RM challenge model with the Erdman strain of Mtb. These results suggest that complete vaccine-mediated immune control of highly pathogenic Mtb is possible if immune effector responses can intercept Mtb infection at its earliest stages.