Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miranda P. Ween is active.

Publication


Featured researches published by Miranda P. Ween.


Cancer and Metastasis Reviews | 2009

The biological role and regulation of versican levels in cancer

Carmela Ricciardelli; Andrew J. Sakko; Miranda P. Ween; Darryl L. Russell; David J. Horsfall

Increased expression of the proteoglycan, versican is strongly associated with poor outcome for many different cancers. Depending on the cancer type, versican is expressed by either the cancer cells themselves or by stromal cells surrounding the tumor. Versican plays diverse roles in cell adhesion, proliferation, migration and angiogenesis, all features of invasion and metastasis. These wide ranging functions have been attributed to the central glycosaminoglycan-binding region of versican, and to the N-(G1) and C-(G3) terminal globular domains which collectively interact with a large number of extracellular matrix and cell surface structural components. Here we review the recently identified mechanisms responsible for the regulation of versican expression and the biological roles that versican plays in cancer invasion and metastasis. The regulation of versican expression may represent one mechanism whereby cancer cells alter their surrounding microenvironment to facilitate the malignant growth and invasion of several tumor types. A greater understanding of the regulation of versican expression may contribute to the development of therapeutic methods to inhibit versican function and tumor invasion.


Cancer Microenvironment | 2011

The Role of Annexin A2 in Tumorigenesis and Cancer Progression

Noor A. Lokman; Miranda P. Ween; Martin K. Oehler; Carmela Ricciardelli

Annexin A2 is a calcium-dependent, phospholipid-binding protein found on various cell types. It is up-regulated in various tumor types and plays multiple roles in regulating cellular functions, including angiogenesis, proliferation, apoptosis, cell migration, invasion and adhesion. Annexin A2 binds with plasminogen and tissue plasminogen activator on the cell surface, which leads to the conversion of plasminogen to plasmin. Plasmin is a serine protease which plays a key role in the activation of metalloproteinases and degradation of extracellular matrix components essential for metastatic progression. We have recently found that both annexin A2 and plasmin are increased in conditioned media of co cultured ovarian cancer and peritoneal cells. Our studies suggest that annexin A2 is part of a tumor-host signal pathway between ovarian cancer and peritoneal cells which promotes ovarian cancer metastasis. Accumulating evidence suggest that interactions between annexin A2 and its binding proteins play an important role in the tumor microenvironment and act together to enhance cancer metastasis. This article reviews the current knowledge on the biological role of annexin A2 and its binding proteins in solid malignancies including ovarian cancer.


Journal of Biological Chemistry | 2007

Formation of Hyaluronan- and Versican-rich Pericellular Matrix by Prostate Cancer Cells Promotes Cell Motility

Carmela Ricciardelli; Darryl L. Russell; Miranda P. Ween; Keiko Mayne; Supaporn Suwiwat; Sharon Byers; Villis R. Marshall; Wayne D. Tilley; David J. Horsfall

Previous studies have demonstrated that high levels of hyaluronan (HA) and the chondroitin sulfate proteoglycan, versican in the peritumoral stroma are associated with metastatic spread of clinical prostate cancer. In vitro integration of HA and versican into a pericellular sheath is a prerequisite for proliferation and migration of vascular smooth muscle cells. In this study, a particle exclusion assay was used to determine whether human prostate cancer cell lines are capable of assembling a pericellular sheath following treatment with versican-containing medium and whether formation of a pericellular sheath modulated cell motility. PC3 and DU145, but not LNCaP cells formed prominent polarized pericellular sheaths following treatment with prostate fibroblast-conditioned medium. The capacity to assemble a pericellular sheath correlated with the ability to express membranous HA receptor, CD44. HA and versican histochemical staining were observed surrounding PC3 and DU145 cells following treatment with prostatic fibroblast-conditioned medium. The dependence on HA for integrity of the pericellular sheath was demonstrated by its removal following treatment with hyaluronidase. Purified versican or conditioned medium from Chinese hamster ovary K1 cells overexpressing versican V1, but not conditioned medium from parental cells, promoted pericellular sheath formation and motility of PC3 cells. Using time lapse microscopy, motile PC3 cells treated with versican but not non-motile cells exhibited a polar pericellular sheath. Polar pericellular sheath was particularly evident at the trailing edge but was excluded from the leading edge of PC3 cells. These studies indicate that prostate cancer cells recruit stromal components to remodel their pericellular environment and promote their motility.


International Journal of Molecular Sciences | 2011

Role of versican, hyaluronan and CD44 in ovarian cancer metastasis.

Miranda P. Ween; Martin K. Oehler; Carmela Ricciardelli

There is increasing evidence to suggest that extracellular matrix (ECM) components play an active role in tumor progression and are an important determinant for the growth and progression of solid tumors. Tumor cells interfere with the normal programming of ECM biosynthesis and can extensively modify the structure and composition of the matrix. In ovarian cancer alterations in the extracellular environment are critical for tumor initiation and progression and intra-peritoneal dissemination. ECM molecules including versican and hyaluronan (HA) which interacts with the HA receptor, CD44, have been shown to play critical roles in ovarian cancer metastasis. This review focuses on versican, HA, and CD44 and their potential as therapeutic targets for ovarian cancer.


Nature Chemical Biology | 2014

Imperfect coordination chemistry facilitates metal ion release in the Psa permease

Rafael M. Couñago; Miranda P. Ween; Stephanie L. Begg; Megha Bajaj; Johannes Zuegg; Megan L. O'Mara; Matthew A. Cooper; Alastair G. McEwan; James C. Paton; Bostjan Kobe; Christopher A. McDevitt

The relative stability of divalent first-row transition metal ion complexes, as defined by the Irving-Williams series, poses a fundamental chemical challenge for selectivity in bacterial metal ion acquisition. Here we show that although the substrate-binding protein of Streptococcus pneumoniae, PsaA, is finely attuned to bind its physiological substrate manganese, it can also bind a broad range of other divalent transition metal cations. By combining high-resolution structural data, metal-binding assays and mutational analyses, we show that the inability of open-state PsaA to satisfy the preferred coordination chemistry of manganese enables the protein to undergo the conformational changes required for cargo release to the Psa permease. This is specific for manganese ions, whereas zinc ions remain bound to PsaA. Collectively, these findings suggest a new ligand binding and release mechanism for PsaA and related substrate-binding proteins that facilitate specificity for divalent cations during competition from zinc ions, which are more abundant in biological systems.


PLOS ONE | 2014

Extracellular Zinc Competitively Inhibits Manganese Uptake and Compromises Oxidative Stress Management in Streptococcus pneumoniae

Bart A. Eijkelkamp; Jacqueline R. Morey; Miranda P. Ween; Cheryl-lynn Y. Ong; Alastair G. McEwan; James C. Paton; Christopher A. McDevitt

Streptococcus pneumoniae requires manganese for colonization of the human host, but the underlying molecular basis for this requirement has not been elucidated. Recently, it was shown that zinc could compromise manganese uptake and that zinc levels increased during infection by S. pneumoniae in all the niches that it colonized. Here we show, by quantitative means, that extracellular zinc acts in a dose dependent manner to competitively inhibit manganese uptake by S. pneumoniae, with an EC50 of 30.2 µM for zinc in cation-defined media. By exploiting the ability to directly manipulate S. pneumoniae accumulation of manganese, we analyzed the connection between manganese and superoxide dismutase (SodA), a primary source of protection for S. pneumoniae against oxidative stress. We show that manganese starvation led to a decrease in sodA transcription indicating that expression of sodA was regulated through an unknown manganese responsive pathway. Intriguingly, examination of recombinant SodA revealed that the enzyme was potentially a cambialistic superoxide dismutase with an iron/manganese cofactor. SodA was also shown to provide the majority of protection against oxidative stress as a S. pneumoniae ΔsodA mutant strain was found to be hypersensitive to oxidative stress, despite having wild-type manganese levels, indicating that the metal ion alone was not sufficiently protective. Collectively, these results provide a quantitative assessment of the competitive effect of zinc upon manganese uptake and provide a molecular basis for how extracellular zinc exerts a ‘toxic’ effect on bacterial pathogens, such as S. pneumoniae.


International Journal of Cancer | 2011

Transforming growth factor-beta-induced protein secreted by peritoneal cells increases the metastatic potential of ovarian cancer cells

Miranda P. Ween; Noor A. Lokman; Peter Hoffmann; Raymond J. Rodgers; Carmela Ricciardelli; Martin K. Oehler

Ovarian cancer metastasis is characterized by the shedding of malignant cells from the surface of the ovary and their implantation onto the peritoneal surface, which lines the abdominal cavity. As the factors promoting this process are poorly understood, we investigated the ovarian cancer–peritoneal interaction by means of in vitro coculture experiments with ovarian cancer (OVCAR‐5 and SKOV‐3) and peritoneal (LP‐9) cells. One of the proteins differentially expressed in the coculture secretome was identified by MALDI‐TOF/TOF mass spectrometry as the extracellular matrix protein transforming growth factor‐beta‐induced protein (TGFBIp, also known as βig‐H3). Immunohistochemistry showed high TGFBIp levels in normal surface ovarian epithelial and peritoneal cells, whereas TGFBIp levels in primary serous ovarian carcinomas and matching metastatic implants was very low. In functional in vitro experiments, treatment with recombinant TGFBIp significantly increased the motility and invasiveness of OVCAR‐5 and SKOV‐3 cells and significantly increased ovarian cancer cell (OVCAR‐5, OVCAR‐3 and SKOV‐3) adhesion to LP‐9 cells. TGFBIp was found to be processed at both the N‐ and C‐terminus in the secretome of the ovarian cancer–peritoneal cell coculture. Plasmin inhibitors blocked TGFBIp processing and significantly reduced OVCAR‐5 cell adhesion to peritoneal cells. We conclude that TGFBIp expressed by peritoneal cells increases the metastatic potential of ovarian cancer cells. TGFBIp is therefore a potential novel therapeutic target against ovarian cancer.


Clinical & Experimental Metastasis | 2011

Versican induces a pro-metastatic ovarian cancer cell behavior which can be inhibited by small hyaluronan oligosaccharides

Miranda P. Ween; Katja Hummitzsch; Raymond J. Rodgers; Martin K. Oehler; Carmela Ricciardelli

The assembly of pericellular matrix containing hyaluronan (HA) and versican has been shown to be a pre-requisite for proliferation and migration of mesenchymal cells. In this study, we investigated whether treatment with recombinant versican could induce the formation of a pericellular matrix by ovarian cancer cells (OVCAR-3, OVCAR-5, and SKOV-3) and promote their motility, invasion, and adhesion to peritoneal cells in vitro. We also determined whether versican-induced pericellular matrix formation and metastatic cancer cell behavior could be blocked by small HA oligosaccharides. Only combined treatment with recombinant versican and HA resulted in pericellular matrix formation by OVCAR-5 and SKOV-3 but not by OVCAR-3 cells, which lack the HA receptor, CD44. The motility of OVCAR-5 and SKOV-3 cells was significantly increased in scratch wound and chemotaxis assays following treatment with recombinant versican and HA. Versican and HA also promoted invasion of SKOV-3 and OVCAR-5 cells but had no effect on OVCAR-3 cells. We have demonstrated that exogenous HA significantly increased OVCAR-5 and SKOV-3 adhesion to peritoneal cells but adhesion was not further increased by versican treatment. Small HA oligomers (6–10 disaccharides) were able to significantly block formation of pericellular matrix by OVCAR-5 cells, as well as the increased motility and invasion induced by recombinant versican. HA oligomers also significantly blocked OVCAR-5 adhesion to peritoneal cells both in the presence and absence of exogenous HA. The dependence of CD44 for the versican and HA mediated effects were demonstrated by the inhibition of pericellular matrix formation as well as motility and invasion of OVCAR-5 cells following treatment with CD44 neutralizing antibody in the presence of versican and HA. We conclude that the acquisition of a HA/versican pericellular matrix by ovarian cancer cells increases their metastatic potential. HA oligomers can block this mechanism and are promising inhibitors of ovarian cancer dissemination.


Protoplasma | 2012

The role of ATP-binding cassette transporters in bacterial pathogenicity

Victoria G. Lewis; Miranda P. Ween; Christopher A. McDevitt

The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.


Critical Reviews in Oncology Hematology | 2015

The role of ABC transporters in ovarian cancer progression and chemoresistance

Miranda P. Ween; M.A. Armstrong; Martin K. Oehler; Carmela Ricciardelli

Over 80% of ovarian cancer patients develop chemoresistance which results in a lethal course of the disease. A well-established cause of chemoresistance involves the family of ATP-binding cassette transporters, or ABC transporters that transport a wide range of substrates including metabolic products, nutrients, lipids, and drugs across extra- and intra-cellular membranes. Expressions of various ABC transporters, shown to reduce the intracellular accumulation of chemotherapy drugs, are increased following chemotherapy and impact on ovarian cancer survival. Although clinical trials to date using ABC transporter inhibitors have been disappointing, ABC transporter inhibition remains an attractive potential adjuvant to chemotherapy. A greater understanding of their physiological functions and role in ovarian cancer chemoresistance will be important for the development of more effective targeted therapies. This article will review the role of the ABC transporter family in ovarian cancer progression and chemoresistance as well as the clinical attempts used to date to reverse chemoresistance.

Collaboration


Dive into the Miranda P. Ween's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rhys Hamon

Royal Adelaide Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Hodge

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Hai B. Tran

Royal Adelaide Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge