Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miranda S. Fram is active.

Publication


Featured researches published by Miranda S. Fram.


Science of The Total Environment | 2011

Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California

Miranda S. Fram; Kenneth Belitz

Pharmaceutical compounds were detected at low concentrations in 2.3% of 1231 samples of groundwater (median depth to top of screened interval in wells=61 m) used for public drinking-water supply in California. Samples were collected statewide for the California State Water Resources Control Boards Groundwater Ambient Monitoring and Assessment (GAMA) Program. Of 14 pharmaceutical compounds analyzed, 7 were detected at concentrations greater than or equal to method detection limits: acetaminophen (used as an analgesic, detection frequency 0.32%, maximum concentration 1.89 μg/L), caffeine (stimulant, 0.24%, 0.29 μg/L), carbamazepine (mood stabilizer, 1.5%, 0.42 μg/L), codeine (opioid analgesic, 0.16%, 0.214 μg/L), p-xanthine (caffeine metabolite, 0.08%, 0.12 μg/L), sulfamethoxazole (antibiotic, 0.41%, 0.17 μg/L), and trimethoprim (antibiotic, 0.08%, 0.018 μg/L). Detection frequencies of pesticides (33%), volatile organic compounds not including trihalomethanes (23%), and trihalomethanes (28%) in the same 1231 samples were significantly higher. Median detected concentration of pharmaceutical compounds was similar to those of volatile organic compounds, and higher than that of pesticides. Pharmaceutical compounds were detected in 3.3% of the 855 samples containing modern groundwater (tritium activity>0.2 TU). Pharmaceutical detections were significantly positively correlated with detections of urban-use herbicides and insecticides, detections of volatile organic compounds, and percentage of urban land use around wells. Groundwater from the Los Angeles metropolitan area had higher detection frequencies of pharmaceuticals and other anthropogenic compounds than groundwater from other areas of the state with similar proportions of urban land use. The higher detection frequencies may reflect that groundwater flow systems in Los Angeles area basins are dominated by engineered recharge and intensive groundwater pumping.


Estuaries | 2001

Pesticides Associated with Suspended Sediments Entering San Francisco Bay Following the First Major Storm of Water Year 1996

Brian A. Bergamaschi; Kathryn M. Kuivila; Miranda S. Fram

Estuaries receive large quantities of suspended sediments following the first major storm of the water year. The first-flush events transport the majority of suspended sediments in any given year, and because of their relative freshness in the hydrologic system, these sediments may carry a significant amount of the sediment-associated pesticide load transported into estuaries. To characterize sediment-associated pesticides during a first-flush event, water and suspended sediment samples were collected at the head of the San Francisco Bay during the peak in suspended sediment concentration that followed the first major storm of the 1996 hydrologic year. Samples were analyzed for a variety of parameters as well as 19 pesticides and degradation products that span a wide range of hydrophobicity. Tidal mixing at the head of the estuary mixed relatively fresh suspended sediment transported down the rivers with suspended sediments in estuary waters. Segregation of the samples into groups with similar degrees of mixing between river and estuary water revealed that transport of suspended sediments from the Sacramento-San Joaquin drainage basin strongly influenced the concentration and distribution of sediment-associated pesticides entering the San Francisco Bay. The less-mixed suspended sediment contained a different distribution of pesticides than the sediments exposed to greater mixing. Temporal trends were evident in pesticide content after samples were segregated according to mixing history. These results indicate sampling strategies that collect at a low frequency or do not compare samples with similar mixing histories will not elucidate basin processes. Despite the considerable influence of mixing, a large number of pesticides were found associated with the suspended sediments. Few pesticides were found in the concurrent water samples and in concentrations much lower than predicted from equilibrium partitioning between the aqueous and sedimentary phases. The observed sediment-associated pesticide concentrations may reflect disequilibria between sedimentary and aqueous phases resulting from long equilibration times at locations where pesticides were applied, and relatively short transit times over which re-equilibration may occur.


Ground Water | 2010

Effects of Groundwater Development on Uranium: Central Valley, California, USA

Bryant C. Jurgens; Miranda S. Fram; Kenneth Belitz; Karen R. Burow; Matthew K. Landon

Uranium (U) concentrations in groundwater in several parts of the eastern San Joaquin Valley, California, have exceeded federal and state drinking water standards during the last 20 years. The San Joaquin Valley is located within the Central Valley of California and is one of the most productive agricultural areas in the world. Increased irrigation and pumping associated with agricultural and urban development during the last 100 years have changed the chemistry and magnitude of groundwater recharge, and increased the rate of downward groundwater movement. Strong correlations between U and bicarbonate suggest that U is leached from shallow sediments by high bicarbonate water, consistent with findings of previous work in Modesto, California. Summer irrigation of crops in agricultural areas and, to lesser extent, of landscape plants and grasses in urban areas, has increased Pco(2) concentrations in the soil zone and caused higher temperature and salinity of groundwater recharge. Coupled with groundwater pumping, this process, as evidenced by increasing bicarbonate concentrations in groundwater over the last 100 years, has caused shallow, young groundwater with high U concentrations to migrate to deeper parts of the groundwater system that are tapped by public-supply wells. Continued downward migration of U-affected groundwater and expansion of urban centers into agricultural areas will likely be associated with increased U concentrations in public-supply wells. The results from this study illustrate the potential long-term effects of groundwater development and irrigation-supported agriculture on water quality in arid and semiarid regions around the world.


Organic Geochemistry | 1999

Carbon isotopic constraints on the contribution of plant material to the natural precursors of trihalomethanes

Brian A. Bergamaschi; Miranda S. Fram; Carol Kendall; Steven R. Silva; George R. Aiken; Roger Fujii

The d 13 C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn; Zea maize L.) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 16.8- diAerence between the d 13 C values of THM produced from the maize and Scirpus leachates, similar to the isotopic diAerence between the whole plant materials. Both maize and Scirpus formed THM 12- lower in 13 C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THMforming DOC, representing diAerent biochemical types or chemical structures, and possessing diAerent environmental reactivity. Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The diAerence between the d 13 C values of the whole isolate and that of the THM it yielded was 3.9-, however, suggesting diagenesis plays a role in determining the d 13 C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources. # 1999 Elsevier Science Ltd. All rights reserved.


Environmental Science & Technology | 2011

Probability of detecting perchlorate under natural conditions in deep groundwater in California and the Southwestern United States

Miranda S. Fram; Kenneth Belitz

We use data from 1626 groundwater samples collected in California, primarily from public drinking water supply wells, to investigate the distribution of perchlorate in deep groundwater under natural conditions. The wells were sampled for the California Groundwater Ambient Monitoring and Assessment Priority Basin Project. We develop a logistic regression model for predicting probabilities of detecting perchlorate at concentrations greater than multiple threshold concentrations as a function of climate (represented by an aridity index) and potential anthropogenic contributions of perchlorate (quantified as an anthropogenic score, AS). AS is a composite categorical variable including terms for nitrate, pesticides, and volatile organic compounds. Incorporating water-quality parameters in AS permits identification of perturbation of natural occurrence patterns by flushing of natural perchlorate salts from unsaturated zones by irrigation recharge as well as addition of perchlorate from industrial and agricultural sources. The data and model results indicate low concentrations (0.1-0.5 μg/L) of perchlorate occur under natural conditions in groundwater across a wide range of climates, beyond the arid to semiarid climates in which they mostly have been previously reported. The probability of detecting perchlorate at concentrations greater than 0.1 μg/L under natural conditions ranges from 50-70% in semiarid to arid regions of California and the Southwestern United States to 5-15% in the wettest regions sampled (the Northern California coast). The probability of concentrations above 1 μg/L under natural conditions is low (generally <3%).


Environmental Science & Technology | 2015

Metrics for Assessing the Quality of Groundwater Used for Public Supply, CA, USA: Equivalent-Population and Area

Kenneth Belitz; Miranda S. Fram; Tyler D. Johnson

Data from 11,000 public supply wells in 87 study areas were used to assess the quality of nearly all of the groundwater used for public supply in California. Two metrics were developed for quantifying groundwater quality: area with high concentrations (km(2) or proportion) and equivalent-population relying upon groundwater with high concentrations (number of people or proportion). Concentrations are considered high if they are above a human-health benchmark. When expressed as proportions, the metrics are area-weighted and population-weighted detection frequencies. On a statewide-scale, about 20% of the groundwater used for public supply has high concentrations for one or more constituents (23% by area and 18% by equivalent-population). On the basis of both area and equivalent-population, trace elements are more prevalent at high concentrations than either nitrate or organic compounds at the statewide-scale, in eight of nine hydrogeologic provinces, and in about three-quarters of the study areas. At a statewide-scale, nitrate is more prevalent than organic compounds based on area, but not on the basis of equivalent-population. The approach developed for this paper, unlike many studies, recognizes the importance of appropriately weighting information when changing scales, and is broadly applicable to other areas.


Scientific Investigations Report | 2013

Status and understanding of groundwater quality in the Madera, Chowchilla Study Unit, 2008: California GAMA Priority Basin Project

Jennifer L. Shelton; Miranda S. Fram; Kenneth Belitz; Bryant C. Jurgens

..........................................................................................................................................................


Science of The Total Environment | 2018

Quantifying anthropogenic contributions to century-scale groundwater salinity changes, San Joaquin Valley, California, USA

Jeffrey A. Hansen; Bryant C. Jurgens; Miranda S. Fram

Total dissolved solids (TDS) concentrations in groundwater tapped for beneficial uses (drinking water, irrigation, freshwater industrial) have increased on average by about 100 mg/L over the last 100 years in the San Joaquin Valley, California (SJV). During this period land use in the SJV changed from natural vegetation and dryland agriculture to dominantly irrigated agriculture with growing urban areas. Century-scale salinity trends were evaluated by comparing TDS concentrations and major ion compositions of groundwater from wells sampled in 1910 (Historic) to data from wells sampled in 1993-2015 (Modern). TDS concentrations in subregions of the SJV, the southern (SSJV), western (WSJV), northeastern (NESJV), and southeastern (SESJV) were calculated using a cell-declustering method. TDS concentrations increased in all regions, with the greatest increases found in the SSJV and SESJV. Evaluation of the Modern data from the NESJV and SESJV found higher TDS concentrations in recently recharged (post-1950) groundwater from shallow (<50 m) wells surrounded predominantly by agricultural land uses, while premodern (pre-1950) groundwater from deeper wells, and recently recharged groundwater from wells surrounded by mainly urban, natural, and mixed land uses had lower TDS concentrations, approaching the TDS concentrations in the Historic groundwater. For the NESJV and SESJV, inverse geochemical modeling with PHREEQC indicated that weathering of primary silicate minerals accounted for the majority of the increase in TDS concentrations, contributing more than nitrate from fertilizers and sulfate from soil amendments combined. Bicarbonate showed the greatest increase among major ions, resulting from enhanced silicate weathering due to recharge of irrigation water enriched in CO2 during the growing season. The results of this study demonstrate that large anthropogenic changes to the hydrologic regime, like massive development of irrigated agriculture in semi-arid areas like the SJV, can cause large changes in groundwater quality on a regional scale.


Fact Sheet | 2013

Groundwater quality in the Madera and Chowchilla subbasins of the San Joaquin Valley, California

Jennifer L. Shelton; Miranda S. Fram; Kenneth Belitz

Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s untreated groundwater quality and increases public access to groundwater-quality information. The Madera and Chowchilla subbasins of the San Joaquin Valley constitute one of the study units being evaluated.


Scientific Investigations Report | 2012

Status of groundwater quality in the Coastal Los Angeles Basin, 2006-California GAMA Priority Basin Project

Dara A. Goldrath; Miranda S. Fram; Michael Land; Kenneth Belitz

..........................................................................................................................................................

Collaboration


Dive into the Miranda S. Fram's collaboration.

Top Co-Authors

Avatar

Kenneth Belitz

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Brian A. Bergamaschi

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Shelton

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Roger Fujii

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Bryant C. Jurgens

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Matthew K. Landon

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Carol Kendall

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Steven R. Silva

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Tyler D. Johnson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

George R. Aiken

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge