Miranda Thomas
International Centre for Genetic Engineering and Biotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miranda Thomas.
Nature | 1998
Alan Storey; Miranda Thomas; Ann Kalita; Catherine A. Harwood; Daniela Gardiol; Fiamma Mantovani; Judith Breuer; Irene M. Leigh; Greg Matlashewski; Lawrence Banks
The E6 oncoprotein derived from tumour-associated human papillomaviruses (HPVs) binds to and induces the degradation of the cellular tumour-suppressor protein p53. A common polymorphism that occurs in the p53 amino-acid sequence results in the presence of either a proline or an arginine at position 72. The effect of this polymorphism on the susceptibility of p53 to E6-mediated degradation has been investigated and the arginine form of p53 was found to be significantly more susceptible than the proline form. Moreover, allelic analysis of patients with HPV-associated tumours revealed a striking overrepresentation of homozygous arginine-72 p53 compared with the normal population, which indicated that individuals homozygous for arginine 72 are about seven times more susceptible to HPV-associated tumorigenesis than heterozygotes. The arginine-encoding allele therefore represents a significant risk factor in the development of HPV-associated cancers.
Molecular and Cellular Biology | 1999
Miranda Thomas; Ann Kalita; Sylvie Labrecque; David Pim; Lawrence Banks; Greg Matlashewski
ABSTRACT The wild-type p53 protein exhibits a common polymorphism at amino acid 72, resulting in either a proline residue (p53Pro) or an arginine residue (p53Arg) at this position. Despite the difference that this change makes in the primary structure of the protein resulting in a difference in migration during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, no differences in the biochemical or biological characteristics of these wild-type p53 variants have been reported. We have recently shown that p53Arg is significantly more susceptible than p53Pro to the degradation induced by human papillomavirus (HPV) E6 protein. Moreover, this may result in an increased susceptibility to HPV-induced tumors in homozygous p53Argindividuals. In further investigating the characteristics of these p53 variants, we now show that both forms are morphologically wild type and do not differ in their ability to bind to DNA in a sequence-specific manner. However, there are a number of differences between the p53 variants in their abilities to bind components of the transcriptional machinery, to activate transcription, to induce apoptosis, and to repress the transformation of primary cells. These observations may have implications for the development of cancers which harbor wild-type p53 sequences and possibly for the ability of such tumors to respond to therapy, depending on their p53 genotype.
Oncogene | 2000
Britt A. Glaunsinger; Siu Sylvia Lee; Miranda Thomas; Lawrence Banks; Ronald T. Javier
The oncoproteins of small DNA tumor viruses promote tumorigenesis by complexing with cellular factors intimately involved in the control of cell proliferation. The major oncogenic determinants for human adenovirus type 9 (Ad9) and high-risk human papillomaviruses (HPV) are the E4-ORF1 and E6 proteins, respectively. These seemingly unrelated viral oncoproteins are similar in that their transforming activities in cells depend, in part, on a carboxyl-terminal PDZ domain-binding motif which mediates interactions with the cellular PDZ-protein DLG. Here we demonstrated that both Ad9 E4-ORF1 and high-risk HPV E6 proteins also bind to the DLG-related PDZ-protein MAGI-1. These interactions resulted in MAGI-1 being aberrantly sequestered in the cytoplasm by the Ad9 E4-ORF1 protein or being targeted for degradation by high-risk HPV E6 proteins. Transformation-defective mutant viral proteins, however, were deficient for these activities. Our findings indicate that MAGI-1 is a member of a select group of cellular PDZ proteins targeted by both adenovirus E4-ORF1 and high-risk HPV E6 proteins and, in addition, suggest that the tumorigenic potentials of these viral oncoproteins depend, in part, on an ability to inhibit the function of MAGI-1 in cells.
Oncogene | 1998
Miranda Thomas; Lawrence Banks
Human papillomavirus (HPV) E6 proteins inhibit apoptosis in both p53-dependent and p53-independent manners. A key point in apoptosis is the regulation provided by the Bcl-2 family; and in differentiating keratinocytes, in which HPV replicates, the Bak protein is highly expressed. We show that HPV-18 E6 will inhibit Bak-induced apoptosis and this is mediated by an interaction between the E6 and Bak proteins resulting in degradation of the Bak protein in vivo. We also show that Bak protein interacts with the ubiquitin ligase, E6AP, and that a mutant of Bak defective in E6AP binding is overexpressed in comparison with wild type. These studies suggest that Bak is probably the first naturally occurring target of E6AP to be identified.
Oncogene | 2002
Miranda Thomas; Richard P. Laura; Karin Hepner; Ernesto Guccione; Charles L. Sawyers; Laurence A. Lasky; Lawrence Banks
The E6 proteins from the high-risk human papillomavirus (HPV) types have previously been shown to target a number of PDZ domain-containing proteins for proteasome-mediated degradation. These include the hDlg tumour suppressor and the MAGI-1 protein. In this study we show that high-risk HPV E6 proteins also target the related MAGI-2 and MAGI-3 proteins for degradation. Moreover, we show that the interaction is specific to one PDZ domain, and that co-expression of this domain can protect each of the full-length MAGI proteins from E6-mediated degradation. These data provide clear indicators for the potential design of compounds that could specifically inhibit the interaction of oncogenic HPV E6 proteins with an important class of target proteins.
Journal of General Virology | 1999
Miranda Thomas; Lawrence Banks
Human papillomavirus (HPV) replication occurs in terminally differentiating epithelium, and requires the activation of cellular DNA replication proteins. Unscheduled DNA replication can result in the induction of apoptosis, and the viral E6 protein induces the degradation of p53 to prevent this. It has recently been shown that HPV-18 E6 can also stimulate the degradation of Bak, a pro-apoptotic member of the Bcl-2 family. This report shows that the E6 proteins from HPV-18, HPV-16 and HPV-11 can all bind to Bak in vitro, stimulate its degradation in vivo and reduce Bak-induced apoptosis. However, the non-oncogenic HPV-11 E6 is less effective than the oncogenic E6 proteins in each of these assays, indicating that the ability of HPV to circumvent the apoptosis induced by Bak may contribute to the oncogenic potential of the virus.
Oncogene | 2008
Miranda Thomas; N Narayan; David Pim; V Tomaić; Paola Massimi; Kazunori Nagasaka; Christian Kranjec; Noor Gammoh; Lawrence Banks
Human papillomaviruses (HPVs) are the causative agents of a number of human cancers, of which cervical cancer is the most important. This occurs following persistent infection with a limited number of viral subtypes and is characterized by continued expression of the viral E6 and E7 oncoproteins. A unique characteristic of the cancer-causing HPV types is the presence of a PDZ recognition motif on the carboxy terminus of the E6 oncoprotein. Through this motif, E6 directs the proteasome-mediated degradation of cellular proteins involved in the regulation of cell polarity and in cell proliferation control. These include components of the Scrib and Par polarity complexes, as well as a number of other PDZ domain-containing substrates. Thus, PVs are now providing novel insights into the functioning of many of these cellular proteins, and into which of these functions, in particular, are relevant for maintaining normal cellular homeostasis. In this review, we discuss the biological consequences of papillomaviral targeting of these cell polarity regulators, both with respect to the viral life cycle and, most importantly, to the development of HPV-induced malignancy.
Oncogene | 2001
Miranda Thomas; Britt A. Glaunsinger; David Pim; Ron Javier; Lawrence Banks
It has recently been shown that the high-risk human papillomavirus (HPV) E6 proteins can target the PDZ-domain containing proteins, Dlg, MUPP-1, MAGI-1 and hScrib for proteasome-mediated degradation. However, the E6 proteins from HPV-16 and HPV-18 (the two most common high-risk virus types) differ in their ability to target these proteins in a manner that correlates with their malignant potential. To investigate the underlying mechanisms for this, we have mutated HPV-16 and HPV-18 E6s to give each protein the others PDZ-binding motif. Analysis of these mutants shows that the greater ability of HPV-18 E6 to bind to these proteins and to target them for degradation is indeed due to a single amino acid difference. Using a number of assays, we show that the E6 proteins interact specifically with only one of the five PDZ domains of MAGI-1, and this is the first interaction described for this particular PDZ domain. We also show that the guanylate kinase homology domain and the regions of MAGI-1 downstream of amino acid 733 are not required for the degradation of MAGI-1. Finally, in a series of comparative analyses, we show that the degradation of MAGI-1 occurs through a different mechanism from that used by the E6 protein to induce the degradation of Dlg and p53.
Journal of Cell Science | 2003
Richard A. Watson; Miranda Thomas; Lawrence Banks; Sally Roberts
Human papillomavirus E6 oncoproteins induce the proteasomal degradation of several multi-PDZ (PSD95/Dlg/ZO-1) domain-containing proteins such as the human homologue of Drosophila discs large. Binding to PDZ domain-containing proteins is mediated by a PDZ-binding motif contained within the C-terminus of E6. The ability of E6 proteins to induce degradation of PDZ domain-containing proteins correlates with their oncogenic potential. Here we examined the biological effect of this region of the human papillomavirus type 18 E6 oncoprotein on keratinocyte morphology. Our results show that in simian virus 40-immortalized human keratinocytes, stable expression of E6 correlated with the induction of an exaggerated mesenchymal-like morphology and actin cytoskeleton disorganization compared with parental cells. The altered phenotype was accentuated in cells expressing an E6 protein containing a mutation (Arg153Leu) within a protein kinase A recognition motif that abrogates protein kinase As negative regulation of the activity of the PDZ-binding domain. The E6-induced changes indicated an epithelial-mesenchymal transition and were supported by the finding that E6-expressing cells contained vimentin. Changes to the epithelial phenotype of cells expressing a mutant E6 protein (Thr156Glu) that is unable to degrade discs large was significantly less marked, although they did show evidence of epithelial-mesenchymal transition. These observations imply that the activity of the E6 PDZ-binding motif contributes only to a part of the transition. Further analysis of the E6 cell lines showed a decrease in adherens junction and desmosome formation. Cells expressing a functional PDZ-binding motif showed the greatest disruption of intercellular junction formation, but this did not correlate with a decrease in total cellular levels of the individual components of adhesion junctions. This suggests that the activity of the PDZ-binding motif may have influenced either the assembly or integrity of functional adhesion complexes. An E6-mediated decrease in peripheral membrane levels of PDZ proteins like discs large could be the basis for the enhanced morphological transformation of immortalized keratinocytes.
Trends in Biochemical Sciences | 2003
Lawrence Banks; David Pim; Miranda Thomas
The discovery that the human papillomavirus E6 oncoprotein could direct the ubiquitination and degradation of the p53 tumour suppressor at the 26S proteasome was the beginning of a new view on virus-host interactions. A decade later, a plethora of viral proteins have been shown to direct host-cell proteins for proteolytic degradation. These activities are required for various aspects of the virus life-cycle from entry, through replication and enhanced cell survival, to viral release. As with oncogenes and cell-cycle control, the study of apparently simple viruses has provided a wealth of information on the function of a whole class of cellular proteins whose function is arguably as important as that of the kinases: the ubiquitin-protein ligases.
Collaboration
Dive into the Miranda Thomas's collaboration.
International Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputsInternational Centre for Genetic Engineering and Biotechnology
View shared research outputs