Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mircea Dincă is active.

Publication


Featured researches published by Mircea Dincă.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Nickel-borate oxygen-evolving catalyst that functions under benign conditions

Mircea Dincă; Yogesh Surendranath; Daniel G. Nocera

Thin catalyst films with electrocatalytic water oxidation properties similar to those of a recently reported Co-based catalyst can be electrodeposited from dilute Ni2+ solutions in borate electrolyte at pH 9.2 (Bi). The Ni-Bi films can be prepared with precise thickness control and operate at modest overpotential providing an alternative to the Co catalyst for applications in solar energy conversion.


Journal of the American Chemical Society | 2010

Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy.

Matthew W. Kanan; Junko Yano; Yogesh Surendranath; Mircea Dincă; Vittal K. Yachandra; Daniel G. Nocera

A water oxidation catalyst generated via electrodeposition from aqueous solutions containing phosphate and Co(2+) (Co-Pi) has been studied by in situ X-ray absorption spectroscopy. Spectra were obtained for Co-Pi films of two different thicknesses at an applied potential supporting water oxidation catalysis and at open circuit. Extended X-ray absorption fine structure (EXAFS) spectra indicate the presence of bis-oxo/hydroxo-bridged Co subunits incorporated into higher nuclearity clusters in Co-Pi. The average cluster nuclearity is greater in a relatively thick film (∼40-50 nmol Co ions/cm(2)) deposited at 1.25 V vs NHE than in an extremely thin film (∼3 nmol Co ions/cm(2)) deposited at 1.1 V. X-ray absorption near edge structure (XANES) spectra and electrochemical data support a Co valency greater than 3 for both Co-Pi samples when catalyzing water oxidation at 1.25 V. Upon switching to open circuit, Co-Pi undergoes a continuous reduction due to residual water oxidation catalysis, as indicated by the negative shift of the edge energy. The rate of reduction depends on the average cluster size. On the basis of structural parameters extracted from fits to the EXAFS data of Co-Pi with two different thicknesses and comparisons with EXAFS spectra of Co oxide compounds, a model is proposed wherein the Co oxo/hydroxo clusters of Co-Pi are composed of edge-sharing CoO(6) octahedra, the structural motif found in cobaltates. Whereas cobaltates contain extended planes of CoO(6) octahedra, the Co-Pi clusters are of molecular dimensions.


Journal of the American Chemical Society | 2011

Turn-On Fluorescence in Tetraphenylethylene-Based Metal–Organic Frameworks: An Alternative to Aggregation-Induced Emission

Natalia B. Shustova; Brian D. McCarthy; Mircea Dincă

Coordinative immobilization of functionalized tetraphenylethylene within rigid porous metal-organic frameworks (MOFs) turns on fluorescence in the typically non-emissive tetraphenylethylene core. The matrix coordination-induced emission effect (MCIE) is complementary to aggregation-induced emission. Despite the large interchromophore distances imposed by coordination to metal ions, a carboxylate analogue of tetraphenylethylene anchored by Zn(2+) and Cd(2+) ions inside MOFs shows fluorescence lifetimes in line with those of close-packed molecular aggregates. Turn-on fluorescence by coordinative ligation in a porous matrix is a powerful approach that may lead to new materials made from chromophores with molecular rotors. The potential utility of MCIE toward building new sensing materials is demonstrated by tuning the fluorescence response of the porous MOFs as a function of adsorbed small analytes.


Angewandte Chemie | 2016

Electrically Conductive Porous Metal-Organic Frameworks.

Lei Sun; Michael G. Campbell; Mircea Dincă

Owing to their outstanding structural, chemical, and functional diversity, metal-organic frameworks (MOFs) have attracted considerable attention over the last two decades in a variety of energy-related applications. Notably missing among these, until recently, were applications that required good charge transport coexisting with porosity and high surface area. Although most MOFs are electrical insulators, several materials in this class have recently demonstrated excellent electrical conductivity and high charge mobility. Herein we review the synthetic and electronic design strategies that have been employed thus far for producing frameworks with permanent porosity and long-range charge transport properties. In addition, key experiments that have been employed to demonstrate electrical transport, as well as selected applications for this subclass of MOFs, will be discussed.


Journal of the American Chemical Society | 2013

Selective Turn-On Ammonia Sensing Enabled by High-Temperature Fluorescence in Metal–Organic Frameworks with Open Metal Sites

Natalia B. Shustova; Anthony F. Cozzolino; Sebastian Reineke; Marc A. Baldo; Mircea Dincă

We show that fluorescent molecules incorporated as ligands in rigid, porous metal-organic frameworks (MOFs) maintain their fluorescence response to a much higher temperature than in molecular crystals. The remarkable high-temperature ligand-based fluorescence, demonstrated here with tetraphenylethylene- and dihydroxyterephthalate-based linkers, is essential for enabling selective and rapid detection of analytes in the gas phase. Both Zn2(TCPE) (TCPE = tetrakis(4-carboxyphenyl)ethylene) and Mg(H2DHBDC) (H2DHBDC(2-) = 2,5-dihydroxybenzene-1,4-dicarboxylate) function as selective sensors for ammonia at 100 °C, although neither shows NH3 selectivity at room temperature. Variable-temperature diffuse-reflectance infrared spectroscopy, fluorescence spectroscopy, and X-ray crystallography are coupled with density-functional calculations to interrogate the temperature-dependent guest-framework interactions and the preferential analyte binding in each material. These results describe a heretofore unrecognized, yet potentially general property of many rigid, fluorescent MOFs and portend new applications for these materials in selective sensors, with selectivity profiles that can be tuned as a function of temperature.


Journal of the American Chemical Society | 2014

High Electrical Conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2, a Semiconducting Metal–Organic Graphene Analogue

Dennis Sheberla; Lei Sun; Martin A. Blood-Forsythe; Süleyman Er; Casey R. Wade; Carl K. Brozek; Alán Aspuru-Guzik; Mircea Dincă

Reaction of 2,3,6,7,10,11-hexaaminotriphenylene with Ni(2+) in aqueous NH3 solution under aerobic conditions produces Ni3(HITP)2 (HITP = 2,3,6,7,10,11-hexaiminotriphenylene), a new two-dimensional metal-organic framework (MOF). The new material can be isolated as a highly conductive black powder or dark blue-violet films. Two-probe and van der Pauw electrical measurements reveal bulk (pellet) and surface (film) conductivity values of 2 and 40 S·cm(-1), respectively, both records for MOFs and among the best for any coordination polymer.


Angewandte Chemie | 2015

Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal–Organic Framework for Chemiresistive Sensing

Michael G. Campbell; Dennis Sheberla; Sophie F. Liu; Timothy M. Swager; Mircea Dincă

The utility of metal-organic frameworks (MOFs) as functional materials in electronic devices has been limited to date by a lack of MOFs that display high electrical conductivity. Here, we report the synthesis of a new electrically conductive 2D MOF, Cu3(HITP)2 (HITP=2,3,6,7,10,11-hexaiminotriphenylene), which displays a bulk conductivity of 0.2 S cm(-1) (pellet, two-point-probe). Devices synthesized by simple drop casting of Cu3(HITP)2 dispersions function as reversible chemiresistive sensors, capable of detecting sub-ppm levels of ammonia vapor. Comparison with the isostructural 2D MOF Ni3(HITP)2 shows that the copper sites are critical for ammonia sensing, indicating that rational design/synthesis can be used to tune the functional properties of conductive MOFs.


Journal of the American Chemical Society | 2013

Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-Substituted MOF-5 and Redox Reactivity in Cr- and Fe-MOF-5

Carl K. Brozek; Mircea Dincă

The metal nodes in metal-organic frameworks (MOFs) are known to act as Lewis acid catalysts, but few reports have explored their ability to mediate reactions that require electron transfer. The unique chemical environments at the nodes should facilitate unusual redox chemistry, but the difficulty in synthesizing MOFs with metal ions in reduced oxidation states has precluded such studies. Herein, we demonstrate that MZn3O(O2C-)6 clusters from Zn4O(1,4-benzenedicarboxylate)3 (MOF-5) serve as hosts for V(2+) and Ti(3+) ions and enable the synthesis of the first MOFs containing these reduced early metal ions, which can be accessed from MOF-5 by postsynthetic ion metathesis (PSIM). Additional MOF-5 analogues featuring Cr(2+), Cr(3+), Mn(2+), and Fe(2+) at the metal nodes can be obtained by similar postsynthetic methods and are reported here for the first time. The inserted metal ions are coordinated within an unusual all-oxygen trigonal ligand field and are accessible to both inner- and outer-sphere oxidants: Cr(2+)- converts into Cr(3+)-substituted MOF-5, while Fe(2+)-MOF-5 activates NO to produce an unusual Fe-nitrosyl complex.


Journal of the American Chemical Society | 2012

Phenyl Ring Dynamics in a Tetraphenylethylene-Bridged Metal-Organic Framework: Implications for the Mechanism of Aggregation-Induced Emission

Natalia B. Shustova; Ta-Chung Ong; Anthony F. Cozzolino; Vladimir K. Michaelis; Robert G. Griffin; Mircea Dincă

Molecules that exhibit emission in the solid state, especially those known as aggregation-induced emission (AIE) chromophores, have found applications in areas as varied as light-emitting diodes and biological sensors. Despite numerous studies, the mechanism of fluorescence quenching in AIE chromophores is still not completely understood. To this end, much interest has focused on understanding the low-frequency vibrational dynamics of prototypical systems, such as tetraphenylethylene (TPE), in the hope that such studies would provide more general principles toward the design of new sensors and electronic materials. We hereby show that a perdeuterated TPE-based metal-organic framework (MOF) serves as an excellent platform for studying the low-energy vibrational modes of AIE-type chromophores. In particular, we use solid-state (2)H and (13)C NMR experiments to investigate the phenyl ring dynamics of TPE cores that are coordinatively trapped inside a MOF and find a phenyl ring flipping energy barrier of 43(6) kJ/mol. DFT calculations are then used to deconvolute the electronic and steric contributions to this flipping barrier. Finally, we couple the NMR and DFT studies with variable-temperature X-ray diffraction experiments to propose that both the ethylenic C═C bond twist and the torsion of the phenyl rings are important for quenching emission in TPE, but that the former may gate the latter. To conclude, we use these findings to propose a set of design criteria for the development of tunable turn-on porous sensors constructed from AIE-type molecules, particularly as applied to the design of new multifunctional MOFs.


Journal of the American Chemical Society | 2012

High Charge Mobility in a Tetrathiafulvalene-Based Microporous Metal−Organic Framework

Tarun C. Narayan; Tomoyo Miyakai; Shu Seki; Mircea Dincă

The tetratopic ligand tetrathiafulvalene-tetrabenzoate (H4TTFTB) is used to synthesize Zn2(TTFTB), a new metal-organic framework that contains columnar stacks of tetrathiafulvalene and benzoate-lined infinite one-dimensional channels. The new MOF remains porous upon desolvation and exhibits charge mobility commensurate with some of the best organic semiconductors, confirmed by flash-photolysis-time-resolved microwave conductivity measurements. Zn2(TTFTB) represents the first example of a permanently porous MOF with high charge mobility and may inspire further exploration of the electronic properties of these materials.

Collaboration


Dive into the Mircea Dincă's collaboration.

Top Co-Authors

Avatar

Lei Sun

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christopher H. Hendon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Carl K. Brozek

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Adam J. Rieth

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Robert J. Comito

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sarah S. Park

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey R. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Maciej D. Korzyński

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge