Mirco Migliavacca
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mirco Migliavacca.
Philosophical Transactions of the Royal Society B | 2010
Andrew D. Richardson; T. Andy Black; Philippe Ciais; Nicolas Delbart; Mark A. Friedl; Nadine Gobron; David Y. Hollinger; Werner L. Kutsch; Bernard Longdoz; Sebastiaan Luyssaert; Mirco Migliavacca; Leonardo Montagnani; J. William Munger; E.J. Moors; Shilong Piao; Corinna Rebmann; Markus Reichstein; Nobuko Saigusa; Enrico Tomelleri; Rodrigo Vargas; Andrej Varlagin
We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.
Science | 2010
Miguel D. Mahecha; Markus Reichstein; Nuno Carvalhais; Gitta Lasslop; Holger Lange; Sonia I. Seneviratne; Rodrigo Vargas; C. Ammann; M. Altaf Arain; Alessandro Cescatti; Ivan A. Janssens; Mirco Migliavacca; Leonardo Montagnani; Andrew D. Richardson
Carbon Cycle and Climate Change As climate change accelerates, it is important to know the likely impact of climate change on the carbon cycle (see the Perspective by Reich). Gross primary production (GPP) is a measure of the amount of CO2 removed from the atmosphere every year to fuel photosynthesis. Beer et al. (p. 834, published online 5 July) used a combination of observation and calculation to estimate that the total GPP by terrestrial plants is around 122 billion tons per year; in comparison, burning fossil fuels emits about 7 billion tons annually. Thirty-two percent of this uptake occurs in tropical forests, and precipitation controls carbon uptake in more than 40% of vegetated land. The temperature sensitivity (Q10) of ecosystem respiratory processes is a key determinant of the interaction between climate and the carbon cycle. Mahecha et al. (p. 838, published online 5 July) now show that the Q10 of ecosystem respiration is invariant with respect to mean annual temperature, independent of the analyzed ecosystem type, with a global mean value for Q10 of 1.6. This level of temperature sensitivity suggests a less-pronounced climate sensitivity of the carbon cycle than assumed by recent climate models. The long-standing discrepancy between modeled and empirical measures of ecosystem temperature sensitivity is resolved. The respiratory release of carbon dioxide (CO2) from the land surface is a major flux in the global carbon cycle, antipodal to photosynthetic CO2 uptake. Understanding the sensitivity of respiratory processes to temperature is central for quantifying the climate–carbon cycle feedback. We approximated the sensitivity of terrestrial ecosystem respiration to air temperature (Q10) across 60 FLUXNET sites with the use of a methodology that circumvents confounding effects. Contrary to previous findings, our results suggest that Q10 is independent of mean annual temperature, does not differ among biomes, and is confined to values around 1.4 ± 0.1. The strong relation between photosynthesis and respiration, by contrast, is highly variable among sites. The results may partly explain a less pronounced climate–carbon cycle feedback than suggested by current carbon cycle climate models.
Global Change Biology | 2015
Matthias Forkel; Mirco Migliavacca; Kirsten Thonicke; Markus Reichstein; Sibyll Schaphoff; Ulrich Weber; Nuno Carvalhais
Identifying the relative importance of climatic and other environmental controls on the interannual variability and trends in global land surface phenology and greenness is challenging. Firstly, quantifications of land surface phenology and greenness dynamics are impaired by differences between satellite data sets and phenology detection methods. Secondly, dynamic global vegetation models (DGVMs) that can be used to diagnose controls still reveal structural limitations and contrasting sensitivities to environmental drivers. Thus, we assessed the performance of a new developed phenology module within the LPJmL (Lund-Potsdam-Jena managed Lands) DGVM with a comprehensive ensemble of three satellite data sets of vegetation greenness and ten phenology detection methods, thereby thoroughly accounting for observational uncertainties. The improved and tested model allows us quantifying the relative importance of environmental controls on interannual variability and trends of land surface phenology and greenness at regional and global scales. We found that start of growing season interannual variability and trends are in addition to cold temperature mainly controlled by incoming radiation and water availability in temperate and boreal forests. Warming-induced prolongations of the growing season in high latitudes are dampened by a limited availability of light. For peak greenness, interannual variability and trends are dominantly controlled by water availability and land-use and land-cover change (LULCC) in all regions. Stronger greening trends in boreal forests of Siberia than in North America are associated with a stronger increase in water availability from melting permafrost soils. Our findings emphasize that in addition to cold temperatures, water availability is a codominant control for start of growing season and peak greenness trends at the global scale.
New Phytologist | 2012
Shuli Niu; Yiqi Luo; Shenfeng Fei; Wenping Yuan; David S. Schimel; Beverly E. Law; C. Ammann; M. Altaf Arain; Almut Arneth; Marc Aubinet; Alan G. Barr; Jason Beringer; Christian Bernhofer; T. Andrew Black; Nina Buchmann; Alessandro Cescatti; Jiquan Chen; Kenneth J. Davis; Ebba Dellwik; Ankur R. Desai; Sophia Etzold; Louis François; Damiano Gianelle; Bert Gielen; Allen H. Goldstein; Margriet Groenendijk; Lianhong Gu; Niall P. Hanan; Carole Helfter; Takashi Hirano
• It is well established that individual organisms can acclimate and adapt to temperature to optimize their functioning. However, thermal optimization of ecosystems, as an assemblage of organisms, has not been examined at broad spatial and temporal scales. • Here, we compiled data from 169 globally distributed sites of eddy covariance and quantified the temperature response functions of net ecosystem exchange (NEE), an ecosystem-level property, to determine whether NEE shows thermal optimality and to explore the underlying mechanisms. • We found that the temperature response of NEE followed a peak curve, with the optimum temperature (corresponding to the maximum magnitude of NEE) being positively correlated with annual mean temperature over years and across sites. Shifts of the optimum temperature of NEE were mostly a result of temperature acclimation of gross primary productivity (upward shift of optimum temperature) rather than changes in the temperature sensitivity of ecosystem respiration. • Ecosystem-level thermal optimality is a newly revealed ecosystem property, presumably reflecting associated evolutionary adaptation of organisms within ecosystems, and has the potential to significantly regulate ecosystem-climate change feedbacks. The thermal optimality of NEE has implications for understanding fundamental properties of ecosystems in changing environments and benchmarking global models.
Review of Scientific Instruments | 2011
Michele Meroni; A. Barducci; Sergio Cogliati; F. Castagnoli; Micol Rossini; Lorenzo Busetto; Mirco Migliavacca; Edoardo Cremonese; M. Galvagno; Roberto Colombo; U. Morra di Cella
Reliable time series of vegetation optical properties are needed to improve the modeling of the terrestrial carbon budget with remote sensing data. This paper describes the development of an automatic spectral system able to collect continuous long-term in-field spectral measurements of spectral down-welling and surface reflected irradiance. The paper addresses the development of the system, named hyperspectral irradiometer (HSI), describes its optical design, the acquisition, and processing operations. Measurements gathered on a vegetated surface by the HSI are shown, discussed and compared with experimental outcomes with independent instruments.
Environmental Research Letters | 2013
Marta Galvagno; Georg Wohlfahrt; Edoardo Cremonese; Micol Rossini; Roberto Colombo; Gianluca Filippa; T. Julitta; Giovanni Manca; Consolata Siniscalco; U. Morra di Cella; Mirco Migliavacca
Changes in snow cover depth and duration predicted by climate change scenarios are expected to strongly affect high-altitude ecosystem processes. This study investigates the effect of an exceptionally short snow season on the phenology and carbon dioxide source/sink strength of a subalpine grassland. An earlier snowmelt of more than one month caused a considerable advancement (40 days) of the beginning of the carbon uptake period (CUP) and, together with a delayed establishment of the snow season in autumn, contributed to a two-month longer CUP. The combined effect of the shorter snow season and the extended CUP led to an increase of about 100% in annual carbon net uptake. Nevertheless, the unusual environmental conditions imposed by the early snowmelt led to changes in canopy structure and functioning, with a reduction of the carbon sequestration rate during the snow-free period.
Climatic Change | 2016
Giovanni Forzieri; Luc Feyen; Simone Russo; Michalis I. Vousdoukas; Lorenzo Alfieri; Stephen Outten; Mirco Migliavacca; Alessandra Bianchi; Rodrigo Rojas; Alba Cid
While reported losses of climate-related hazards are at historically high levels, climate change is likely to enhance the risk posed by extreme weather events. Several regions are likely to be exposed to multiple climate hazards, yet their modeling in a joint scheme is still at the early stages. A multi-hazard framework to map exposure to multiple climate extremes in Europe along the twenty-first century is hereby presented. Using an ensemble of climate projections, changes in the frequency of heat and cold waves, river and coastal flooding, streamflow droughts, wildfires and windstorms are evaluated. Corresponding variations in expected annual exposure allow for a quantitative comparison of hazards described by different process characteristics and metrics. Projected changes in exposure depict important variations in hazard scenarios, especially those linked to rising temperatures, and spatial patterns largely modulated by local climate conditions. Results show that Europe will likely face a progressive increase in overall climate hazard with a prominent spatial gradient towards south-western regions mainly driven by the rise of heat waves, droughts and wildfires. Key hotspots emerge particularly along coastlines and in floodplains, often highly populated and economically pivotal, where floods and windstorms could be critical in combination with other climate hazards. Projected increases in exposure will be larger for very extreme events due to their pronounced changes in frequency. Results of this appraisal provide useful input for forthcoming European disaster risk and adaptation policy.
Sensors | 2009
Mirco Migliavacca; Michele Meroni; Lorenzo Busetto; Roberto Colombo; Terenzio Zenone; Giorgio Matteucci; Giovanni Manca; Guenther Seufert
In this paper we present results obtained in the framework of a regional-scale analysis of the carbon budget of poplar plantations in Northern Italy. We explored the ability of the process-based model BIOME-BGC to estimate the gross primary production (GPP) using an inverse modeling approach exploiting eddy covariance and satellite data. We firstly present a version of BIOME-BGC coupled with the radiative transfer models PROSPECT and SAILH (named PROSAILH-BGC) with the aims of i) improving the BIOME-BGC description of the radiative transfer regime within the canopy and ii) allowing the assimilation of remotely-sensed vegetation index time series, such as MODIS NDVI, into the model. Secondly, we present a two-step model inversion for optimization of model parameters. In the first step, some key ecophysiological parameters were optimized against data collected by an eddy covariance flux tower. In the second step, important information about phenological dates and about standing biomass were optimized against MODIS NDVI. Results obtained showed that the PROSAILH-BGC allowed simulation of MODIS NDVI with good accuracy and that we described better the canopy radiation regime. The inverse modeling approach was demonstrated to be useful for the optimization of ecophysiological model parameters, phenological dates and parameters related to the standing biomass, allowing good accuracy of daily and annual GPP predictions. In summary, this study showed that assimilation of eddy covariance and remote sensing data in a process model may provide important information for modeling gross primary production at regional scale.
Global Change Biology | 2015
Mirco Migliavacca; Markus Reichstein; Andrew D. Richardson; Miguel D. Mahecha; Edoardo Cremonese; Nicolas Delpierre; Marta Galvagno; Beverly E. Law; G. Wohlfahrt; T. Andrew Black; Nuno Carvalhais; Guido Ceccherini; Jiquan Chen; Nadine Gobron; Ernest Koffi; J. William Munger; Oscar Pérez-Priego; Monica Robustelli; Enrico Tomelleri; Alessandro Cescatti
Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy.
Applied Optics | 2010
Michele Meroni; Lorenzo Busetto; Luis Guanter; Sergio Cogliati; Giovanni F. Crosta; Mirco Migliavacca; Micol Rossini; Roberto Colombo
The accurate spectral characterization of high-resolution spectrometers is required for correctly computing, interpreting, and comparing radiance and reflectance spectra acquired at different times or by different instruments. In this paper, we describe an algorithm for the spectral characterization of field spectrometer data using sharp atmospheric or solar absorption features present in the measured data. The algorithm retrieves systematic shifts in channel position and actual full width at half-maximum (FWHM) of the instrument by comparing data acquired during standard field spectroscopy measurement operations with a reference irradiance spectrum modeled with the MODTRAN4 radiative transfer code. Measurements from four different field spectrometers with spectral resolutions ranging from 0.05 to 3.5nm are processed and the results validated against laboratory calibration. An accurate retrieval of channel position and FWHM has been achieved, with an average error smaller than the instrument spectral sampling interval.