Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirco Schmolke is active.

Publication


Featured researches published by Mirco Schmolke.


Journal of Virology | 2007

Influenza A Virus NS1 Protein Activates the PI3K/Akt Pathway To Mediate Antiapoptotic Signaling Responses

Christina Ehrhardt; Thorsten Wolff; Stephan Pleschka; Oliver Planz; Wiebke Beermann; Johannes G. Bode; Mirco Schmolke; Stephan Ludwig

ABSTRACT Recently we have shown that influenza A virus infection leads to activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and that this cellular reaction is dependent on the expression of the viral nonstructural protein 1 (NS1). These data also suggested that PI3K activation confers a virus-supporting activity at intermediate stages of the infection cycle. So far it is not known which process is regulated by the kinase that supports virus replication. It is well established that upon infection with influenza A virus, the expression of the viral NS1 keeps the induction of beta interferon and the apoptotic response within a tolerable limit. On a molecular basis, this activity of NS1 has been suggested to preclude the activation of cellular double-stranded RNA receptors as well as impaired modulation of mRNA processing. Here we present a novel mode of action of the NS1 protein to suppress apoptosis induction. NS1 binds to and activates PI3K, which results in the activation of the PI3K effector Akt. This leads to a subsequent inhibition of caspase 9 and glycogen synthase-kinase 3β and limitation of the virus-induced cell death program. Thus, NS1 not only blocks but also activates signaling pathways to ensure efficient virus replication.


PLOS Pathogens | 2008

Influenza A Virus Inhibits Type I IFN Signaling via NF-κB-Dependent Induction of SOCS-3 Expression

Eva-K. Pauli; Mirco Schmolke; Thorsten Wolff; Dorothee Viemann; J. Roth; Johannes G. Bode; Stephan Ludwig

The type I interferon (IFN) system is a first line of defense against viral infections. Viruses have developed various mechanisms to counteract this response. So far, the interferon antagonistic activity of influenza A viruses was mainly observed on the level of IFNβ gene induction via action of the viral non-structural protein 1 (NS1). Here we present data indicating that influenza A viruses not only suppress IFNβ gene induction but also inhibit type I IFN signaling through a mechanism involving induction of the suppressor of cytokine signaling-3 (SOCS-3) protein. Our study was based on the observation that in cells that were infected with influenza A virus and subsequently stimulated with IFNα/β, phosphorylation of the signal transducer and activator of transcription protein 1 (STAT1) was strongly reduced. This impaired STAT1 activation was not due to the action of viral proteins but rather appeared to be induced by accumulation of viral 5′ triphosphate RNA in the cell. SOCS proteins are potent endogenous inhibitors of Janus kinase (JAK)/STAT signaling. Closer examination revealed that SOCS-3 but not SOCS-1 mRNA levels increase in an RNA- and nuclear factor kappa B (NF-κB)-dependent but type I IFN-independent manner early in the viral replication cycle. This direct viral induction of SOCS-3 mRNA and protein expression appears to be relevant for suppression of the antiviral response since in SOCS-3 deficient cells a sustained phosphorylation of STAT1 correlated with elevated expression of type I IFN-dependent genes. As a consequence, progeny virus titers were reduced in SOCS-3 deficient cells or in cells were SOCS-3 expression was knocked-down by siRNA. These data provide the first evidence that influenza A viruses suppress type I IFN signaling on the level of JAK/STAT activation. The inhibitory effect is at least in part due to the induction of SOCS-3 gene expression, which results in an impaired antiviral response.


PLOS Pathogens | 2011

The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein.

Zsuzsanna T. Varga; Irene Ramos; Rong Hai; Mirco Schmolke; Adolfo García-Sastre; Ana Fernandez-Sesma; Peter Palese

PB1-F2 is a 90 amino acid protein that is expressed from the +1 open reading frame in the PB1 gene of some influenza A viruses and has been shown to contribute to viral pathogenicity. Notably, a serine at position 66 (66S) in PB1-F2 is known to increase virulence compared to an isogenic virus with an asparagine (66N) at this position. Recently, we found that an influenza virus expressing PB1-F2 N66S suppresses interferon (IFN)-stimulated genes in mice. To characterize this phenomenon, we employed several in vitro assays. Overexpression of the A/Puerto Rico/8/1934 (PR8) PB1-F2 protein in 293T cells decreased RIG-I mediated activation of an IFN-β reporter and secretion of IFN as determined by bioassay. Of note, the PB1-F2 N66S protein showed enhanced IFN antagonism activity compared to PB1-F2 wildtype. Similar observations were found in the context of viral infection with a PR8 PB1-F2 N66S virus. To understand the relationship between NS1, a previously described influenza virus protein involved in suppression of IFN synthesis, and PB1-F2, we investigated the induction of IFN when NS1 and PB1-F2 were co-expressed in an in vitro transfection system. In this assay we found that PB1-F2 N66S further reduced IFN induction in the presence of NS1. By inducing the IFN-β reporter at different levels in the signaling cascade, we found that PB1-F2 inhibited IFN production at the level of the mitochondrial antiviral signaling protein (MAVS). Furthermore, immunofluorescence studies revealed that PB1-F2 co-localizes with MAVS. In summary, we have characterized the anti-interferon function of PB1-F2 and we suggest that this activity contributes to the enhanced pathogenicity seen with PB1-F2 N66S- expressing influenza viruses.


Journal of Clinical Investigation | 2012

Cross-presenting CD103+ dendritic cells are protected from influenza virus infection.

Julie Helft; Balaji Manicassamy; Pierre Guermonprez; Daigo Hashimoto; Aymeric Silvin; Judith Agudo; Brian D. Brown; Mirco Schmolke; Jennifer Miller; Marylene Leboeuf; Kenneth M. Murphy; Adolfo García-Sastre; Miriam Merad

CD8+ cytotoxic T cells are critical for viral clearance from the lungs upon influenza virus infection. The contribution of antigen cross-presentation by DCs to the induction of anti-viral cytotoxic T cells remains controversial. Here, we used a recombinant influenza virus expressing a nonstructural 1-GFP (NS1-GFP) reporter gene to visualize the route of antigen presentation by lung DCs upon viral infection in mice. We found that lung CD103+ DCs were the only subset of cells that carried intact GFP protein to the draining LNs. Strikingly, lung migratory CD103+ DCs were not productively infected by influenza virus and thus were able to induce virus-specific CD8+ T cells through the cross-presentation of antigens from virally infected cells. We also observed that CD103+ DC resistance to infection correlates with an increased anti-viral state in these cells that is dependent on the expression of type I IFN receptor. These results show that efficient cross-priming by migratory lung DCs is coupled to the acquisition of an anti-viral status, which is dependent on the type I IFN signaling pathway.


Science | 2015

Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency

Michael J. Ciancanelli; Sarah X.L. Huang; Priya Luthra; Hannah Garner; Yuval Itan; Stefano Volpi; Fabien G. Lafaille; Céline Trouillet; Mirco Schmolke; Randy A. Albrecht; Elisabeth Israelsson; Hye Kyung Lim; Melina Casadio; Tamar Hermesh; Lazaro Lorenzo; Lawrence W. Leung; Vincent Pedergnana; Bertrand Boisson; Satoshi Okada; Capucine Picard; Benedicte Ringuier; Françoise Troussier; Damien Chaussabel; Laurent Abel; Isabelle Pellier; Luigi D. Notarangelo; Adolfo García-Sastre; Christopher F. Basler; Frederic Geissmann; Shen-Ying Zhang

A genetic cause for severe influenza Although chicken soup and plenty of rest get most kids through an influenza virus infection, some require hospitalization. Ciancanelli et al. report on one child who suffered severely from influenza because of null mutations in the gene for transcription factor IRF7. Cells isolated from this patient could not make enough secreted antiviral proteins, called interferons, to halt viral replication. The requirement for IRF7 seems quite specific, because this patient recovers normally from other common childhood viral infections. Science, this issue p. 448 A mutation that reduces antiviral interferons underlies certain cases of severe influenza in children. Severe influenza disease strikes otherwise healthy children and remains unexplained. We report compound heterozygous null mutations in IRF7, which encodes the transcription factor interferon regulatory factor 7, in an otherwise healthy child who suffered life-threatening influenza during primary infection. In response to influenza virus, the patient’s leukocytes and plasmacytoid dendritic cells produced very little type I and III interferons (IFNs). Moreover, the patient’s dermal fibroblasts and induced pluripotent stem cell (iPSC)–derived pulmonary epithelial cells produced reduced amounts of type I IFN and displayed increased influenza virus replication. These findings suggest that IRF7-dependent amplification of type I and III IFNs is required for protection against primary infection by influenza virus in humans. They also show that severe influenza may result from single-gene inborn errors of immunity.


Journal of Virology | 2010

PB1-F2 Expression by the 2009 Pandemic H1N1 Influenza Virus Has Minimal Impact on Virulence in Animal Models

Rong Hai; Mirco Schmolke; Zsuzsanna T. Varga; Balaji Manicassamy; Taia T. Wang; Jessica A. Belser; Melissa B. Pearce; Adolfo García-Sastre; Terrence M. Tumpey; Peter Palese

ABSTRACT Unlike previous pandemic viruses, the 2009 H1N1 pandemic influenza virus does not code for the virulence factor PB1-F2. The genome of the 2009 H1N1 virus contains three stop codons preventing PB1-F2 expression; however, PB1-F2 production could occur following genetic mutation or reassortment. Thus, it is of great interest to understand the impact that expression of the PB1-F2 protein might have in the context of the 2009 pandemic influenza virus, A/California/04/2009 (Cal/09). We have addressed this question by generating two Cal/09 viruses with productive PB1-F2 open reading frames containing either an asparagine at position 66 of PB1-F2 (66N) or a serine at position 66 (66S): this N66S change has previously been shown to be associated with increased virulence in mice. We used these viruses to investigate the effect on virulence conferred by expression of the 66N or the 66S PB1-F2 protein in both in vitro and in vivo systems. Our results show enhanced replication of the 66S virus in A549 cells, while studies of BALB/c and DBA/2 mice and ferrets revealed no significant differences in symptoms of infection with wild-type Cal/09 versus the 66N or 66S virus variant. Also, coinfection of mice with Streptococcus pneumoniae and the different viruses (recombinant wild-type [rWT] Cal/09 and the 66N and 66S viruses) did not result in significant differences in mortality. Mice infected with either PB1-F2-expressing virus did demonstrate altered protein levels of proinflammatory cytokines; differences were observed to be greater in infection caused by the 66S virus. In summary, our study demonstrates that PB1-F2 expression by the Cal/09 virus modulates the immune response to infection while having a minimal effect on virus virulence in two mammalian models.


Journal of Virology | 2010

Inefficient Control of Host Gene Expression by the 2009 Pandemic H1N1 Influenza A Virus NS1 Protein

Benjamin G. Hale; John Steel; Rafael A. Medina; Balaji Manicassamy; Jianqiang Ye; Danielle Hickman; Rong Hai; Mirco Schmolke; Anice C. Lowen; Daniel R. Perez; Adolfo García-Sastre

ABSTRACT In 2009, a novel swine-origin H1N1 influenza A virus emerged. Here, we characterize the multifunctional NS1 protein of this human pandemic virus in order to understand factors that may contribute to replication efficiency or pathogenicity. Although the 2009 H1N1 virus NS1 protein (2009/NS1) is an effective interferon antagonist, we found that this NS1 (unlike those of previous human-adapted influenza A viruses) is unable to block general host gene expression in human or swine cells. This property could be restored in 2009/NS1 by replacing R108, E125, and G189 with residues corresponding to human virus consensus. Mechanistically, these previously undescribed mutations acted by increasing binding of 2009/NS1 to the cellular pre-mRNA processing protein CPSF30. A recombinant 2009 H1N1 influenza A virus (A/California/04/09) expressing NS1 with these gain-of-function substitutions was more efficient than the wild type at antagonizing host innate immune responses in primary human epithelial cells. However, such mutations had no significant effect on virus replication in either human or swine tissue culture substrates. Surprisingly, in a mouse model of pathogenicity, the mutant virus appeared to cause less morbidity, and was cleared faster, than the wild type. The mutant virus also demonstrated reduced titers in the upper respiratory tracts of ferrets; however, contact and aerosol transmissibility of the virus was unaffected. Our data highlight a potential human adaptation of NS1 that seems absent in “classically derived” swine-origin influenza A viruses, including the 2009 H1N1 virus. We discuss the impact that a natural future gain of this NS1 function may have on the new pandemic virus in humans.


Nature Communications | 2013

Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility

Rong Hai; Mirco Schmolke; Victor H. Leyva-Grado; Rajagowthamee Thangavel; Irina Margine; Eric L. Jaffe; Florian Krammer; Alicia Solórzano; Adolfo García-Sastre; Peter Palese; Nicole M. Bouvier

Without baseline human immunity to the emergent avian influenza A(H7N9) virus, neuraminidase inhibitors are vital for controlling viral replication in severe infections. An amino acid change in the viral neuraminidase associated with drug resistance, NA-R292K (N2 numbering), has been found in some H7N9 clinical isolates. Here we assess the impact of the NA-R292K substitution on antiviral sensitivity and viral replication, pathogenicity and transmissibility of H7N9 viruses. Our data indicate that an H7N9 isolate encoding the NA-R292K substitution is highly resistant to oseltamivir and peramivir and partially resistant to zanamivir. Furthermore, H7N9 reassortants with and without the resistance mutation demonstrate comparable viral replication in primary human respiratory cells, virulence in mice and transmissibility in guinea pigs. Thus, in stark contrast to oseltamivir-resistant seasonal influenza A(H3N2) viruses, H7N9 virus replication and pathogenicity in these models are not substantially altered by the acquisition of high-level oseltamivir resistance due to the NA-R292K mutation.


PLOS Pathogens | 2011

Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species.

Mirco Schmolke; Balaji Manicassamy; Lindomar Pena; Troy Sutton; Rong Hai; Zsuzsanna T. Varga; Benjamin G. Hale; John Steel; Daniel R. Perez; Adolfo García-Sastre

Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20th century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.


Journal of Biological Chemistry | 2010

Erk5 Activation Elicits a Vasoprotective Endothelial Phenotype via Induction of Krüppel-like Factor 4 (KLF4)

Nils Ohnesorge; Dorothee Viemann; Nicole Schmidt; Tobias Czymai; Désirée Spiering; Mirco Schmolke; Stephan Ludwig; J. Roth; Matthias Goebeler; Marc Schmidt

The MEK5/Erk5 MAPK cascade has recently been implicated in the regulation of endothelial integrity and represents a candidate pathway mediating the beneficial effects of laminar flow, a major factor preventing vascular dysfunction and disease. Here we expressed a constitutively active mutant of MEK5 (MEK5D) to study the transcriptional and functional responses to Erk5 activation in human primary endothelial cells. We provide evidence that constitutive Erk5 activation elicits an overall protective phenotype characterized by increased apoptosis resistance and a decreased angiogenic, migratory, and inflammatory potential. This is supported by bioinformatic microarray analysis, which uncovered a statistical overrepresentation of corresponding functional clusters as well as a significant induction of anti-thrombotic, hemostatic, and vasodilatory genes. We identify KLF4 as a novel Erk5 target and demonstrate a critical role of this transcription factor downstream of Erk5. We show that KLF4 expression largely reproduces the protective phenotype in endothelial cells, whereas KLF4 siRNA suppresses expression of various Erk5 targets. Additionally, we show that vasoprotective statins potently induce KLF4 and KLF4-dependent gene expression via activation of Erk5. Our data underscore a major protective function of the MEK5/Erk5/KLF4 module in ECs and implicate agonistic Erk5 activation as potential strategy for treatment of vascular diseases.

Collaboration


Dive into the Mirco Schmolke's collaboration.

Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randy A. Albrecht

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Rong Hai

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Roth

University of Münster

View shared research outputs
Top Co-Authors

Avatar

Peter Palese

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge