Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireia Coscolla is active.

Publication


Featured researches published by Mireia Coscolla.


Nature Genetics | 2013

Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans

Iñaki Comas; Mireia Coscolla; Tao Luo; Sonia Borrell; Kathryn E. Holt; Midori Kato-Maeda; Julian Parkhill; Bijaya Malla; Stefan Berg; Guy Thwaites; Dorothy Yeboah-Manu; Graham Bothamley; Jian Mei; Lanhai Wei; Stephen D. Bentley; Simon R. Harris; Stefan Niemann; Roland Diel; Abraham Aseffa; Qian Gao; Douglas B. Young; Sebastien Gagneux

Tuberculosis caused 20% of all human deaths in the Western world between the seventeenth and nineteenth centuries and remains a cause of high mortality in developing countries. In analogy to other crowd diseases, the origin of human tuberculosis has been associated with the Neolithic Demographic Transition, but recent studies point to a much earlier origin. We analyzed the whole genomes of 259 M. tuberculosis complex (MTBC) strains and used this data set to characterize global diversity and to reconstruct the evolutionary history of this pathogen. Coalescent analyses indicate that MTBC emerged about 70,000 years ago, accompanied migrations of anatomically modern humans out of Africa and expanded as a consequence of increases in human population density during the Neolithic period. This long coevolutionary history is consistent with MTBC displaying characteristics indicative of adaptation to both low and high host densities.


Nature | 2014

Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis

Kirsten I. Bos; Kelly M. Harkins; Alexander Herbig; Mireia Coscolla; Nico Weber; Iñaki Comas; Stephen Forrest; Josephine M. Bryant; Simon R. Harris; Verena J. Schuenemann; Tessa J. Campbell; Kerttu Majander; Alicia K. Wilbur; Ricardo A. Guichón; Dawnie Wolfe Steadman; Della Collins Cook; Stefan Niemann; Marcel A. Behr; Martin Zumarraga; Ricardo Bastida; Daniel H. Huson; Kay Nieselt; Douglas B. Young; Julian Parkhill; Jane E. Buikstra; Sebastien Gagneux; Anne C. Stone; Johannes Krause

Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those from Europe, supporting the assumption that human tuberculosis was introduced post-contact. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-old mycobacterial genomes from Peruvian human skeletons, revealing that a member of the M. tuberculosis complex caused human disease before contact. The ancient strains are distinct from known human-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean.


Seminars in Immunology | 2014

Consequences of genomic diversity in Mycobacterium tuberculosis.

Mireia Coscolla; Sebastien Gagneux

The causative agent of human tuberculosis, Mycobacterium tuberculosis complex (MTBC), comprises seven phylogenetically distinct lineages associated with different geographical regions. Here we review the latest findings on the nature and amount of genomic diversity within and between MTBC lineages. We then review recent evidence for the effect of this genomic diversity on mycobacterial phenotypes measured experimentally and in clinical settings. We conclude that overall, the most geographically widespread Lineage 2 (includes Beijing) and Lineage 4 (also known as Euro-American) are more virulent than other lineages that are more geographically restricted. This increased virulence is associated with delayed or reduced pro-inflammatory host immune responses, greater severity of disease, and enhanced transmission. Future work should focus on the interaction between MTBC and human genetic diversity, as well as on the environmental factors that modulate these interactions.


The New England Journal of Medicine | 2015

Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis

Guido V. Bloemberg; Peter M. Keller; David Stucki; Andrej Trauner; Sonia Borrell; Tsogyal Latshang; Mireia Coscolla; Thomas Rothe; Rico Hömke; Claudia Ritter; Julia Feldmann; Bettina Schulthess; Sebastien Gagneux; Erik C. Böttger

Treatment of multidrug-resistant Mycobacterium tuberculosis is a challenge. This letter describes the emergence of resistance to new therapies, bedaquiline and delamanid.


PLOS ONE | 2012

Two new rapid SNP-typing methods for classifying Mycobacterium tuberculosis complex into the main phylogenetic lineages

David Stucki; Bijaya Malla; Simon Hostettler; Thembela Huna; Julia Feldmann; Dorothy Yeboah-Manu; Sonia Borrell; Lukas Fenner; Iñaki Comas; Mireia Coscolla; Sebastien Gagneux

There is increasing evidence that strain variation in Mycobacterium tuberculosis complex (MTBC) might influence the outcome of tuberculosis infection and disease. To assess genotype-phenotype associations, phylogenetically robust molecular markers and appropriate genotyping tools are required. Most current genotyping methods for MTBC are based on mobile or repetitive DNA elements. Because these elements are prone to convergent evolution, the corresponding genotyping techniques are suboptimal for phylogenetic studies and strain classification. By contrast, single nucleotide polymorphisms (SNP) are ideal markers for classifying MTBC into phylogenetic lineages, as they exhibit very low degrees of homoplasy. In this study, we developed two complementary SNP-based genotyping methods to classify strains into the six main human-associated lineages of MTBC, the “Beijing” sublineage, and the clade comprising Mycobacterium bovis and Mycobacterium caprae. Phylogenetically informative SNPs were obtained from 22 MTBC whole-genome sequences. The first assay, referred to as MOL-PCR, is a ligation-dependent PCR with signal detection by fluorescent microspheres and a Luminex flow cytometer, which simultaneously interrogates eight SNPs. The second assay is based on six individual TaqMan real-time PCR assays for singleplex SNP-typing. We compared MOL-PCR and TaqMan results in two panels of clinical MTBC isolates. Both methods agreed fully when assigning 36 well-characterized strains into the main phylogenetic lineages. The sensitivity in allele-calling was 98.6% and 98.8% for MOL-PCR and TaqMan, respectively. Typing of an additional panel of 78 unknown clinical isolates revealed 99.2% and 100% sensitivity in allele-calling, respectively, and 100% agreement in lineage assignment between both methods. While MOL-PCR and TaqMan are both highly sensitive and specific, MOL-PCR is ideal for classification of isolates with no previous information, whereas TaqMan is faster for confirmation. Furthermore, both methods are rapid, flexible and comparably inexpensive.


Nature Genetics | 2016

Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

David Stucki; Daniela Brites; Leïla Jeljeli; Mireia Coscolla; Qingyun Liu; Andrej Trauner; Lukas Fenner; Liliana K. Rutaihwa; Sonia Borrell; Tao Luo; Qian Gao; Midori Kato-Maeda; Marie Ballif; Matthias Egger; Rita Macedo; Helmi Mardassi; Milagros Moreno; Griselda Tudo Vilanova; Janet Fyfe; Maria Globan; Jackson Thomas; Frances Jamieson; Jennifer L. Guthrie; Adwoa Asante-Poku; Dorothy Yeboah-Manu; Eddie M. Wampande; Willy Ssengooba; Moses Joloba; W. Henry Boom; Indira Basu

Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.


Emerging Infectious Diseases | 2013

Novel mycobacterium tuberculosis complex isolate from a wild chimpanzee

Mireia Coscolla; Astrid Lewin; Sonja Metzger; Kerstin Maetz-Rennsing; Sébastien Calvignac-Spencer; Andreas Nitsche; Pjotr Wojtek Dabrowski; Aleksandar Radonić; Stefan Niemann; Julian Parkhill; Emmanuel Couacy-Hymann; Julia Feldman; Iñaki Comas; Christophe Boesch; Sebastien Gagneux; Fabian H. Leendertz

Tuberculosis (TB) is caused by gram-positive bacteria known as the Mycobacterium tuberculosis complex (MTBC). MTBC include several human-associated lineages and several variants adapted to domestic and, more rarely, wild animal species. We report an M. tuberculosis strain isolated from a wild chimpanzee in Côte d’Ivoire that was shown by comparative genomic and phylogenomic analyses to belong to a new lineage of MTBC, closer to the human-associated lineage 6 (also known as M. africanum West Africa 2) than to the other classical animal-associated MTBC strains. These results show that the general view of the genetic diversity of MTBC is limited and support the possibility that other MTBC variants exist, particularly in wild mammals in Africa. Exploring this diversity is crucial to the understanding of the biology and evolutionary history of this widespread infectious disease.


Clinical and Vaccine Immunology | 2012

Beijing sublineages of Mycobacterium tuberculosis differ in pathogenicity in the guinea pig.

Midori Kato-Maeda; Crystal A. Shanley; Ackart D; Leah G. Jarlsberg; Shaobin Shang; Andrés Obregón-Henao; Marisa Harton; Randall J. Basaraba; Marcela Henao-Tamayo; Barrozo Jc; Rose J; Kawamura Lm; Mireia Coscolla; Viacheslav Y. Fofanov; Heather Koshinsky; Sebastien Gagneux; Philip C. Hopewell; Diane J. Ordway; Ian M. Orme

ABSTRACT The Beijing family of Mycobacterium tuberculosis strains is part of lineage 2 (also known as the East Asian lineage). In clinical studies, we have observed that isolates from the sublineage RD207 of lineage 2 were more readily transmitted among humans. To investigate the basis for this difference, we tested representative strains with the characteristic Beijing spoligotype from four of the five sublineages of lineage 2 in the guinea pig model and subjected these strains to comparative whole-genome sequencing. The results of these studies showed that all of the clinical strains were capable of growing and causing lung pathology in guinea pigs after low-dose aerosol exposure. Differences between the abilities of the four sublineages to grow in the lungs of these animals were not overt, but members of RD207 were significantly more pathogenic, resulting in severe lung damage. The RD207 strains also induced much higher levels of markers associated with regulatory T cells and showed a significant loss of activated T cells in the lungs over the course of the infections. Whole-genome sequencing of the strains revealed mutations specific for RD207 which may explain this difference. Based on these data, we hypothesize that the sublineages of M. tuberculosis are associated with distinct pathological and clinical phenotypes and that these differences influence the transmissibility of particular M. tuberculosis strains in human populations.


Mbio | 2014

Sequence Diversity in the pe_pgrs Genes of Mycobacterium tuberculosis Is Independent of Human T Cell Recognition

Richard Copin; Mireia Coscolla; Salome N. Seiffert; Graham Bothamley; Jayne S. Sutherland; Georgetta Mbayo; Sebastien Gagneux; Joel D. Ernst

ABSTRACT The Mycobacterium tuberculosis genome includes the large family of pe_pgrs genes, whose functions are unknown. Because of precedents in other pathogens in which gene families showing high sequence variation are involved in antigenic variation, a similar role has been proposed for the pe_pgrs genes. However, the impact of immune selection on pe_pgrs genes has not been examined. Here, we sequenced 27 pe_pgrs genes in 94 clinical strains from five phylogenetic lineages of the M. tuberculosis complex (MTBC). We found that pe_pgrs genes were overall more diverse than the remainder of the MTBC genome, but individual members of the family varied widely in their nucleotide diversity and insertion/deletion (indel) content: some were more, and others were much less, diverse than the genome average. Individual pe_pgrs genes also differed in the ratio of nonsynonymous to synonymous mutations, suggesting that different selection pressures act on individual pe_pgrs genes. Using bioinformatic methods, we tested whether sequence diversity in pe_pgrs genes might be selected by human T cell recognition, the major mechanism of adaptive immunity to MTBC. We found that the large majority of predicted human T cell epitopes were confined to the conserved PE domain and experimentally confirmed the antigenicity of this domain in tuberculosis patients. In contrast, despite being genetically diverse, the PGRS domains harbored few predicted T cell epitopes. These results indicate that human T cell recognition is not a significant force driving sequence diversity in pe_pgrs genes, which is consistent with the previously reported conservation of human T cell epitopes in the MTBC. IMPORTANCE Recognition of Mycobacterium tuberculosis antigens by T lymphocytes is known to be important for immune protection against tuberculosis, but it is unclear whether human T cell recognition drives antigenic variation in M. tuberculosis. We previously discovered that the known human T cell epitopes in the M. tuberculosis complex are highly conserved, but we hypothesized that undiscovered epitopes with naturally occurring sequence variants might exist. To test this hypothesis, we examined the pe_pgrs genes, a large family of genes that has been proposed to function in immune evasion by M. tuberculosis. We found that the pe_pgrs genes exhibit considerable sequence variation, but the regions containing T cell epitopes and the regions of variation are distinct. These findings confirm that the majority of human T cell epitopes of M. tuberculosis are highly conserved and indicate that selection forces other than T cell recognition drive sequence variation in the pe_pgrs genes. Recognition of Mycobacterium tuberculosis antigens by T lymphocytes is known to be important for immune protection against tuberculosis, but it is unclear whether human T cell recognition drives antigenic variation in M. tuberculosis. We previously discovered that the known human T cell epitopes in the M. tuberculosis complex are highly conserved, but we hypothesized that undiscovered epitopes with naturally occurring sequence variants might exist. To test this hypothesis, we examined the pe_pgrs genes, a large family of genes that has been proposed to function in immune evasion by M. tuberculosis. We found that the pe_pgrs genes exhibit considerable sequence variation, but the regions containing T cell epitopes and the regions of variation are distinct. These findings confirm that the majority of human T cell epitopes of M. tuberculosis are highly conserved and indicate that selection forces other than T cell recognition drive sequence variation in the pe_pgrs genes.


The Journal of Infectious Diseases | 2015

Tracking a Tuberculosis Outbreak Over 21 Years: Strain-Specific Single-Nucleotide Polymorphism Typing Combined With Targeted Whole-Genome Sequencing

David Stucki; Marie Ballif; Thomas Bodmer; Mireia Coscolla; Anne-Marie Maurer; Sara Christine Droz; Christa Butz; Sonia Borrell; Christel Längle; Julia Feldmann; Hansjakob Furrer; Carlo Mordasini; Peter Helbling; Hans L. Rieder; Matthias Egger; Sebastien Gagneux; Lukas Fenner

BACKGROUND Whole-genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single-nucleotide polymorphism (SNP) typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS On the basis of genome sequences of 3 historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1642 patient isolates and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS We identified 68 patients associated with the outbreak strain. Most received a tuberculosis diagnosis in 1991-1995, but cases were observed until 2011. Two thirds were homeless and/or substance abusers. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into 3 subclusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS Strain-specific SNP genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real time and at high resolution.

Collaboration


Dive into the Mireia Coscolla's collaboration.

Top Co-Authors

Avatar

Sebastien Gagneux

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Sonia Borrell

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Stucki

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Julia Feldmann

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Iñaki Comas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Brites

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge