Mireia Güell
University of Girona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mireia Güell.
Nature Chemistry | 2011
Irene Prat; Jennifer S. Mathieson; Mireia Güell; Xavi Ribas; Josep M. Luis; Leroy Cronin
Oxo-transfer chemistry mediated by iron underpins many biological processes and today is emerging as synthetically very important for the catalytic oxidation of C-H and C=C moieties that are hard to activate conventionally. Despite the vast amount of research in this area, experimental characterization of the reactive species under catalytic conditions is very limited, although a Fe(V)=O moiety was postulated. Here we show, using variable-temperature mass spectrometry, the generation of a Fe(V)=O species within a synthetic non-haem complex at -40 °C and its reaction with an olefin. Also, with isotopic labelling we were able both to follow oxygen-atom transfer from H(2)O(2)/H(2)O through Fe(V)=O to the products and to probe the reactivity as a function of temperature. This study pioneers the implementation of variable-temperature mass spectrometry to investigate reactive intermediates.
Chemistry: A European Journal | 2009
Yan Feng; Mireia Güell; Xavi Ribas; Josep M. Luis; Lawrence Que
Wet oxygenase models: Unprecedented high levels of water incorporation into products (up to 75%) is observed in epoxidation reactions with H(2)O(2) by a bioinspired nonheme iron catalyst. A surprising substrate-dependent incorporation of water is observed, and is proposed to arise from fast equilibrium between two high-valent HO-Fe(V)=O isomeric species exhibiting different reactivity.
Journal of Physical Chemistry A | 2010
Marcel Swart; Mireia Güell; Josep M. Luis; Miquel Solà
Recently, we reported that the basis set has a profound influence on the computed values for spin-state splittings [J. Phys. Chem. A 2008, 112, 6384]. In particular, small Gaussian-type orbital (GTO) basis sets were shown to be unreliable for the prediction of them. Here, we report simple modifications of the small Pople-type Gaussian-type orbital basis sets (3-21G, 3-21G*, 6-31G, 6-31G*), which correct their faulty behavior for the spin-state energies. We have investigated the basis sets for a set of 13 first-row transition-metal complexes for which reliable reference data have been obtained at the OPBE/TZ2P(STO) level. For several systems, we have used single and double spin-contamination corrections to avoid ambiguity of the results because of spin contamination, that is, the energies and geometries were obtained for the pure spin states. The spin ground states as predicted by the spin-state-corrected GTO basis sets (s6-31G, s6-31G*) are in complete agreement with the reference Slater-type orbital (STO) data, while those of the original basis sets and a recent modification by Baker and Pulay (m6-31G*) are not for all cases. The spin-state-corrected GTO basis sets also improve upon the original and modified basis sets for the accuracy of geometry optimization, while the accuracy of the vibrational frequencies is as good or better. At a limited additional cost, one therefore obtains very reliable results for these important spin-state energies.
Journal of Biological Inorganic Chemistry | 2007
Mireia Güell; Per E. M. Siegbahn
The mechanism for the oxidation of catechol by catechol oxidase has been studied using B3LYP hybrid density functional theory. On the basis of the X-ray structure of the enzyme, the molecular system investigated includes the first-shell protein ligands of the two metal centers as well as the second-shell ligand Cys92. The cycle starts out with the oxidized, open-shell singlet complex with oxidation states Cu2(II,II) with a μ-η2:η2 bridging peroxide, as suggested experimentally, which is obtained from the oxidation of Cu2(I,I) by dioxygen. The substrate of each half-reaction is a catechol molecule approaching the dicopper complex: the first half-reaction involves Cu(I) oxidation by peroxide and the second one Cu(II) reduction. The quantitative potential energy profile of the reaction is discussed in connection with experimental data. Since no protons leave or enter the active site during the catalytic cycle, no external base is required. Unlike the previous density functional theory study, the dicopper complex has a charge of +2.
Physical Chemistry Chemical Physics | 2011
Marcel Swart; Mireia Güell; Miquel Solà
We report here for the first time a multi-scale study on the concept of spin-crossover compounds, which integrates improved density functionals, a polarizable force field and hybrid QM/MM calculations. This multi-scale setup is applied to the temperature dependence of spin states of a Fe(II) compound with trispyrazolylborate ligands that exhibits spin-crossover. Our study shows a transition temperature of around 290 K, which is in perfect agreement with experimental results. Moreover, based on our data we provide the origin of why spin transition occurs in this iron-compound: it results directly from spin-state changes in the iron-compound that lead to more favourable electrostatic interactions for the high-spin state.
Journal of Biological Inorganic Chemistry | 2009
Mireia Güell; Josep M. Luis; Miquel Solà; Per E. M. Siegbahn
Tyrosinase catalyzes the ortho hydroxylation of monophenols and the subsequent oxidation of the diphenolic products to the resulting quinones. In efforts to create biomimetic copper complexes that can oxidize C–H bonds, Stack and coworkers recently reported a synthetic μ-η2:η2-peroxodicopper(II)(DBED)2 complex (DBED is N,N′-di-tert-butylethylenediamine), which rapidly hydroxylates phenolates. A reactive intermediate consistent with a bis-μ-oxo-dicopper(III)-phenolate complex, with the O–O bond fully cleaved, is observed experimentally. Overall, the evidence for sequential O–O bond cleavage and C–O bond formation in this synthetic complex suggests an alternative mechanism to the concerted or late-stage O–O bond scission generally accepted for the phenol hydroxylation reaction performed by tyrosinase. In this work, the reaction mechanism of this peroxodicopper(II) complex was studied with hybrid density functional methods by replacing DBED in the μ-η2:η2-peroxodicopper(II)(DBED)2 complex by N,N′-dimethylethylenediamine ligands to reduce the computational costs. The reaction mechanism obtained is compared with the existing proposals for the catalytic ortho hydroxylation of monophenol and the subsequent oxidation of the diphenolic product to the resulting quinone with the aim of gaining some understanding about the copper-promoted oxidation processes mediated by 2:1 Cu(I)O2-derived species.
Physical Chemistry Chemical Physics | 2014
Maja Gruden-Pavlović; Stepan Stepanović; Marko Perić; Mireia Güell; Marcel Swart
Density Functional Theory (DFT) was used to analyse and explain spin state energetics of first-row transition metals (Mn(II), Fe(II), Co(II); Cr(III), Mn(III), Fe(III), Co(III); Mn(IV)) in polypyrazolylborato complexes. We explored the effects of substitutions at the 3 and 5 positions of the pyrazolyl rings, as well as the influence of Jahn-Teller (JT) distortions on spin-state switching. Although the stabilizations due to JT distortion are sometimes substantial, this does not lead to switching of the spin ground-state. On the other hand, electron withdrawing or donating substituents do lead to significant changes in the spin-crossover (SCO) properties of the investigated complexes.
Journal of Biological Inorganic Chemistry | 2009
Mireia Güell; Josep M. Luis; Per E. M. Siegbahn; Miquel Solà
Peptidylglycine α-amidating monooxygenase and dopamine β-monooxygenase are copper-containing proteins which catalyze essential hydroxylation reactions in biological systems. There are several possible mechanisms for the reductive O2-activation at their mononuclear copper active site. Recently, Karlin and coworkers reported on the reactivity of a copper(II)–superoxo complex which is capable of inducing the hydroxylation of phenols with incorporated oxygen atoms derived from the Cu(II)-O2·− moiety. In the present work the reaction mechanism for the abovementioned superoxo complex with phenols is studied. The pathways found are analyzed with the aim of providing some insight into the nature of the chemical and biological copper-promoted oxidative processes with 1:1 Cu(I)/O2-derived species.
Journal of the American Chemical Society | 2007
Laura Gómez; Mireia Güell; Xavi Ribas; Josep M. Luis; Lawrence Que
Journal of Physical Chemistry A | 2008
Mireia Güell; Josep M. Luis; Miquel Solà; Marcel Swart