Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireille Bétermier is active.

Publication


Featured researches published by Mireille Bétermier.


Nature | 2006

Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia

Jean-Marc Aury; Olivier Jaillon; Laurent Duret; Benjamin Noel; Claire Jubin; Betina M. Porcel; Béatrice Segurens; Vincent Daubin; Véronique Anthouard; Nathalie Aiach; Olivier Arnaiz; Alain Billaut; Janine Beisson; Isabelle Blanc; Khaled Bouhouche; Francisco Câmara; Sandra Duharcourt; Roderic Guigó; Delphine Gogendeau; Michael Katinka; Anne-Marie Keller; Roland Kissmehl; Catherine Klotz; Anne Le Mouël; Gersende Lepère; Sophie Malinsky; Mariusz Nowacki; Jacek K. Nowak; Helmut Plattner; Julie Poulain

The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.


Nature | 2008

Translational control of intron splicing in eukaryotes.

Olivier Jaillon; Khaled Bouhouche; Jean-François Gout; Jean-Marc Aury; Benjamin Noel; Baptiste Saudemont; Mariusz Nowacki; Vincent Serrano; Betina M. Porcel; Béatrice Segurens; Anne Le Mouël; Gersende Lepère; Vincent Schächter; Mireille Bétermier; Jean Cohen; Patrick Wincker; Linda Sperling; Laurent Duret; Eric Meyer

Most eukaryotic genes are interrupted by non-coding introns that must be accurately removed from pre-messenger RNAs to produce translatable mRNAs. Splicing is guided locally by short conserved sequences, but genes typically contain many potential splice sites, and the mechanisms specifying the correct sites remain poorly understood. In most organisms, short introns recognized by the intron definition mechanism cannot be efficiently predicted solely on the basis of sequence motifs. In multicellular eukaryotes, long introns are recognized through exon definition and most genes produce multiple mRNA variants through alternative splicing. The nonsense-mediated mRNA decay (NMD) pathway may further shape the observed sets of variants by selectively degrading those containing premature termination codons, which are frequently produced in mammals. Here we show that the tiny introns of the ciliate Paramecium tetraurelia are under strong selective pressure to cause premature termination of mRNA translation in the event of intron retention, and that the same bias is observed among the short introns of plants, fungi and animals. By knocking down the two P. tetraurelia genes encoding UPF1, a protein that is crucial in NMD, we show that the intrinsic efficiency of splicing varies widely among introns and that NMD activity can significantly reduce the fraction of unspliced mRNAs. The results suggest that, independently of alternative splicing, species with large intron numbers universally rely on NMD to compensate for suboptimal splicing efficiency and accuracy.


PLOS Genetics | 2014

Is Non-Homologous End-Joining Really an Inherently Error-Prone Process?

Mireille Bétermier; Pascale Bertrand; Bernard S. Lopez

DNA double-strand breaks (DSBs) are harmful lesions leading to genomic instability or diversity. Non-homologous end-joining (NHEJ) is a prominent DSB repair pathway, which has long been considered to be error-prone. However, recent data have pointed to the intrinsic precision of NHEJ. Three reasons can account for the apparent fallibility of NHEJ: 1) the existence of a highly error-prone alternative end-joining process; 2) the adaptability of canonical C-NHEJ (Ku- and Xrcc4/ligase IV–dependent) to imperfect complementary ends; and 3) the requirement to first process chemically incompatible DNA ends that cannot be ligated directly. Thus, C-NHEJ is conservative but adaptable, and the accuracy of the repair is dictated by the structure of the DNA ends rather than by the C-NHEJ machinery. We present data from different organisms that describe the conservative/versatile properties of C-NHEJ. The advantages of the adaptability/versatility of C-NHEJ are discussed for the development of the immune repertoire and the resistance to ionizing radiation, especially at low doses, and for targeted genome manipulation.


Genes & Development | 2009

PiggyMac, a domesticated piggyBac transposase involved in programmed genome rearrangements in the ciliate Paramecium tetraurelia

Céline Baudry; Sophie Malinsky; Matthieu Restituito; Aurélie Kapusta; Sarah Rosa; Eric Meyer; Mireille Bétermier

Programmed genome rearrangements drive functional gene assembly in ciliates during the development of the somatic macronucleus. The elimination of germline sequences is directed by noncoding RNAs and is initiated by DNA double-strand breaks, but the enzymes responsible for DNA cleavage have not been identified. We show here that PiggyMac (Pgm), a domesticated piggyBac transposase, is required for these rearrangements in Paramecium tetraurelia. A GFP-Pgm fusion localizes in developing macronuclei, where rearrangements take place, and RNAi-mediated silencing of PGM abolishes DNA cleavage. This is the first in vivo evidence suggesting an essential endonucleolytic function of a domesticated piggyBac transposase.


Genes & Development | 2008

Maternal noncoding transcripts antagonize the targeting of DNA elimination by scanRNAs in Paramecium tetraurelia

Gersende Lepère; Mireille Bétermier; Eric Meyer; Sandra Duharcourt

The germline genome of ciliates is extensively rearranged during the development of a new somatic macronucleus from the germline micronucleus, after sexual events. In Paramecium tetraurelia, single-copy internal eliminated sequences (IESs) are precisely excised from coding sequences and intergenic regions. For a subset of IESs, introduction of the IES sequence into the maternal macronucleus specifically inhibits excision of the homologous IES in the developing zygotic macronucleus, suggesting that epigenetic regulation of excision involves a global comparison of germline and somatic genomes. ScanRNAs (scnRNAs) produced during micronuclear meiosis by a developmentally regulated RNAi pathway have been proposed to mediate this transnuclear cross-talk. In this study, microinjection experiments provide direct evidence that 25-nucleotide (nt) scnRNAs promote IES excision. We further show that noncoding RNAs are produced from the somatic maternal genome, both during vegetative growth and during sexual events. Maternal inhibition of IES excision is abolished when maternal somatic transcripts containing an IES are targeted for degradation by a distinct RNAi pathway involving 23-nt siRNAs. The results strongly support a scnRNA/macronuclear RNA scanning model in which a natural genomic subtraction, occurring during meiosis between deletion-inducing scnRNAs and antagonistic transcripts from the maternal macronucleus, regulates rearrangements of the zygotic genome.


PLOS Genetics | 2012

The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences

Olivier Arnaiz; Nathalie Mathy; Céline Baudry; Sophie Malinsky; Jean-Marc Aury; Cyril Denby Wilkes; Olivier Garnier; Karine Labadie; Benjamin E. Lauderdale; Anne Le Mouël; Antoine Marmignon; Mariusz Nowacki; Julie Poulain; Malgorzata Prajer; Patrick Wincker; Eric Meyer; Sandra Duharcourt; Laurent Duret; Mireille Bétermier; Linda Sperling

Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.


The EMBO Journal | 1997

Assembly of a strong promoter following IS911 circularization and the role of circles in transposition

Bao Ton-Hoang; Mireille Bétermier; Patrice Polard; Michael Chandler

When supplied with high levels of the IS911‐encoded transposase, IS911‐based transposons can excise as circles in which the right and left terminal inverted repeats are abutted. Formation of the circle junction is shown here to create a promoter, pjunc, which is significantly stronger than the indigenous promoter, pIRL, and is also capable of driving expression of the IS911 transposition proteins. High transposase expression from the circular transposon may promote use of the circle as an integration substrate. The results demonstrate that IS911 circles are highly efficient substrates for insertion into a target molecule in vivo. Insertion leads to the disassembly of pjunc and thus to a lower level of synthesis of the transposition proteins. The observation that normal levels of IS911 transposition proteins supplied by wild‐type copies of IS911 are also capable of generating transposon circles, albeit at a low level, reinforces the idea that the transposon circles might form part of the natural transposition cycle of IS911. These observations form the elements of a feedback control mechanism and have been incorporated into a model describing one possible pathway of IS911 transposition.


Trends in Genetics | 2001

Paramecium genome survey : a pilot project

Philippe Dessen; Marek Zagulski; Robert Gromadka; Helmut Plattner; Roland Kissmehl; Eric Meyer; Mireille Bétermier; Joachim E. Schultz; Jürgen U. Linder; Ronald E. Pearlman; Ching Kung; Jim Forney; Birgit H. Satir; Judith Van Houten; Anne Marie Keller; Marine Froissard; Linda Sperling; Jean Cohen

A consortium of laboratories undertook a pilot sequencing project to gain insight into the genome of Paramecium. Plasmid-end sequencing of DNA fragments from the somatic nucleus together with similarity searches identified 722 potential protein-coding genes. High gene density and uniform small intron size make random sequencing of somatic chromosomes a cost-effective strategy for gene discovery in this organism.


Genome Research | 2008

Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: A somatic view of the germline

Laurent Duret; Jean Cohen; Claire Jubin; Philippe Dessen; Jean-François Gout; Sylvain Mousset; Jean-Marc Aury; Olivier Jaillon; Benjamin Noel; Olivier Arnaiz; Mireille Bétermier; Patrick Wincker; Eric Meyer; Linda Sperling

Ciliates are the only unicellular eukaryotes known to separate germinal and somatic functions. Diploid but silent micronuclei transmit the genetic information to the next sexual generation. Polyploid macronuclei express the genetic information from a streamlined version of the genome but are replaced at each sexual generation. The macronuclear genome of Paramecium tetraurelia was recently sequenced by a shotgun approach, providing access to the gene repertoire. The 72-Mb assembly represents a consensus sequence for the somatic DNA, which is produced after sexual events by reproducible rearrangements of the zygotic genome involving elimination of repeated sequences, precise excision of unique-copy internal eliminated sequences (IES), and amplification of the cellular genes to high copy number. We report use of the shotgun sequencing data (>10(6) reads representing 13 x coverage of a completely homozygous clone) to evaluate variability in the somatic DNA produced by these developmental genome rearrangements. Although DNA amplification appears uniform, both of the DNA elimination processes produce sequence heterogeneity. The variability that arises from IES excision allowed identification of hundreds of putative new IESs, compared to 42 that were previously known, and revealed cases of erroneous excision of segments of coding sequences. We demonstrate that IESs in coding regions are under selective pressure to introduce premature termination of translation in case of excision failure.


Nucleic Acids Research | 2011

Functional specialization of Piwi proteins in Paramecium tetraurelia from post-transcriptional gene silencing to genome remodelling

Khaled Bouhouche; Jean-François Gout; Aurélie Kapusta; Mireille Bétermier; Eric Meyer

Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements.

Collaboration


Dive into the Mireille Bétermier's collaboration.

Top Co-Authors

Avatar

Eric Meyer

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Linda Sperling

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Sophie Malinsky

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Chandler

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean Cohen

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Janine Beisson

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Ching Kung

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge