Mireille Dumoulin
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mireille Dumoulin.
Protein Science | 2009
Mireille Dumoulin; Katja Conrath; Annemie Van Meirhaeghe; Filip Meersman; Karel Heremans; Leon Gerardus Joseph Frenken; Serge Muyldermans; Lode Wyns; André Matagne
A variety of techniques, including high‐pressure unfolding monitored by Fourier transform infrared spectroscopy, fluorescence, circular dichroism, and surface plasmon resonance spectroscopy, have been used to investigate the equilibrium folding properties of six single‐domain antigen binders derived from camelid heavy‐chain antibodies with specificities for lysozymes, β‐lactamases, and a dye (RR6). Various denaturing conditions (guanidinium chloride, urea, temperature, and pressure) provided complementary and independent methods for characterizing the stability and unfolding properties of the antibody fragments. With all binders, complete recovery of the biological activity after renaturation demonstrates that chemical‐induced unfolding is fully reversible. Furthermore, denaturation experiments followed by optical spectroscopic methods and affinity measurements indicate that the antibody fragments are unfolded cooperatively in a single transition. Thus, unfolding/refolding equilibrium proceeds via a simple two‐state mechanism (N⇋U), where only the native and the denatured states are significantly populated. Thermally‐induced denaturation, however, is not completely reversible, and the partial loss of binding capacity might be due, at least in part, to incorrect refolding of the long loops (CDRs), which are responsible for antigen recognition. Most interestingly, all the fragments are rather resistant to heat‐induced denaturation (apparent Tm = 60–80°C), and display high conformational stabilities (ΔG(H2O) = 30–60 kJ mole−1). Such high thermodynamic stability has never been reported for any functional conventional antibody fragment, even when engineered antigen binders are considered. Hence, the reduced size, improved solubility, and higher stability of the camelid heavy‐chain antibody fragments are of special interest for biotechnological and medical applications.
Nature | 2003
Mireille Dumoulin; Aline Desmyter; Klaas Decanniere; Denis Canet; Göran Larsson; Andrew Spencer; David B. Archer; Jurgen Sasse; Serge Muyldermans; Lode Wyns; Christina Redfield; André Matagne; Carol V. Robinson; Christopher M. Dobson
Amyloid diseases are characterized by an aberrant assembly of a specific protein or protein fragment into fibrils and plaques that are deposited in various organs and tissues, often with serious pathological consequences. Non-neuropathic systemic amyloidosis is associated with single point mutations in the gene coding for human lysozyme. Here we report that a single-domain fragment of a camelid antibody raised against wild-type human lysozyme inhibits the in vitro aggregation of its amyloidogenic variant, D67H. Our structural studies reveal that the epitope includes neither the site of mutation nor most residues in the region of the protein structure that is destabilized by the mutation. Instead, the binding of the antibody fragment achieves its effect by restoring the structural cooperativity characteristic of the wild-type protein. This appears to occur at least in part through the transmission of long-range conformational effects to the interface between the two structural domains of the protein. Thus, reducing the ability of an amyloidogenic protein to form partly unfolded species can be an effective method of preventing its aggregation, suggesting approaches to the rational design of therapeutic agents directed against protein deposition diseases.
Journal of Molecular Biology | 2010
Erwin De Genst; Tim Guilliams; Joke Wellens; Elizabeth ODay; Christopher A. Waudby; Sarah Meehan; Mireille Dumoulin; Shang-Te Danny Hsu; Nunilo Cremades; Koen H. Verschueren; Els Pardon; Lode Wyns; Jan Steyaert; John Christodoulou; Christopher M. Dobson
The aggregation of the intrinsically disordered protein α-synuclein to form fibrillar amyloid structures is intimately associated with a variety of neurological disorders, most notably Parkinsons disease. The molecular mechanism of α-synuclein aggregation and toxicity is not yet understood in any detail, not least because of the paucity of structural probes through which to study the behavior of such a disordered system. Here, we describe an investigation involving a single-domain camelid antibody, NbSyn2, selected by phage display techniques to bind to α-synuclein, including the exploration of its effects on the in vitro aggregation of the protein under a variety of conditions. We show using isothermal calorimetric methods that NbSyn2 binds specifically to monomeric α-synuclein with nanomolar affinity and by means of NMR spectroscopy that it interacts with the four C-terminal residues of the protein. This latter finding is confirmed by the determination of a crystal structure of NbSyn2 bound to a peptide encompassing the nine C-terminal residues of α-synuclein. The NbSyn2:α-synuclein interaction is mediated mainly by side-chain interactions while water molecules cross-link the main-chain atoms of α-synuclein to atoms of NbSyn2, a feature we believe could be important in intrinsically disordered protein interactions more generally. The aggregation behavior of α-synuclein at physiological pH, including the morphology of the resulting fibrillar structures, is remarkably unaffected by the presence of NbSyn2 and indeed we show that NbSyn2 binds strongly to the aggregated as well as to the soluble forms of α-synuclein. These results give strong support to the conjecture that the C-terminal region of the protein is not directly involved in the mechanism of aggregation and suggest that binding of NbSyn2 could be a useful probe for the identification of α-synuclein aggregation in vitro and possibly in vivo.
Journal of Molecular Biology | 2010
Maria F. Mossuto; Anne Dhulesia; Glyn L. Devlin; Erica Frare; Janet R. Kumita; Patrizia Polverino de Laureto; Mireille Dumoulin; Angelo Fontana; Christopher M. Dobson; Xavier Salvatella
Identifying the cause of the cytotoxicity of species populated during amyloid formation is crucial to understand the molecular basis of protein deposition diseases. We have examined different types of aggregates formed by lysozyme, a protein found as fibrillar deposits in patients with familial systemic amyloidosis, by infrared spectroscopy, transmission electron microscopy, and depolymerization experiments, and analyzed how they affect cell viability. We have characterized two types of human lysozyme amyloid structures formed in vitro that differ in morphology, molecular structure, stability, and size of the cross-β core. Of particular interest is that the fibrils with a smaller core generate a significant cytotoxic effect. These findings indicate that protein aggregation can give rise to species with different degree of cytotoxicity due to intrinsic differences in their physicochemical properties.
Journal of Molecular Biology | 2009
Erica Frare; Maria F. Mossuto; Patrizia Polverino de Laureto; Serena Tolin; Linda Menzer; Mireille Dumoulin; Christopher M. Dobson; Angelo Fontana
The aggregation process of wild-type human lysozyme at pH3.0 and 60 degrees C has been analyzed by characterizing a series of distinct species formed on the aggregation pathway, specifically the amyloidogenic monomeric precursor protein, the oligomeric soluble prefibrillar aggregates, and the mature fibrils. Particular attention has been focused on the analysis of the structural properties of the oligomeric species, since recent studies have shown that the oligomers formed by lysozyme prior to the appearance of mature amyloid fibrils are toxic to cells. Here, soluble oligomers of human lysozyme have been analyzed by a range of techniques including binding to fluorescent probes such as thioflavin T and 1-anilino-naphthalene-8-sulfonate, Fourier transform infrared spectroscopy, and controlled proteolysis. Oligomers were isolated after 5 days of incubation of the protein and appear as spherical particles with a diameter of 8-17 nm when observed by transmission electron microscopy. Unlike the monomeric protein, oligomers have solvent-exposed hydrophobic patches able to bind the fluorescent probe 1-anilino-naphthalene-8-sulfonate. Fourier transform infrared spectroscopy spectra of oligomers are indicative of misfolded species when compared to monomeric lysozyme, with a prevalence of random structure but with significant elements of the beta-sheet structure that is characteristic of the mature fibrils. Moreover, the oligomeric lysozyme aggregates were found to be more susceptible to proteolysis with pepsin than both the monomeric protein and the mature fibrils, indicating further their less organized structure. In summary, this study shows that the soluble lysozyme oligomers are locally unfolded species that are present at low concentration during the initial phases of aggregation. The nonnative conformational features of the lysozyme molecules of which they are composed are likely to be the factors that confer on them the ability to interact inappropriately with a variety of cellular components including membranes.
Biochemistry | 2008
Pak-Ho Chan; Els Pardon; Linda Menzer; Erwin De Genst; Janet R. Kumita; John Christodoulou; Dirk Saerens; Alain Brans; Fabrice Bouillenne; David B. Archer; Carol V. Robinson; Serge Muyldermans; André Matagne; Christina Redfield; Lode Wyns; Christopher M. Dobson; Mireille Dumoulin
A single-domain fragment, cAb-HuL22, of a camelid heavy-chain antibody specific for the active site of human lysozyme has been generated, and its effects on the properties of the I56T and D67H amyloidogenic variants of human lysozyme, which are associated with a form of systemic amyloidosis, have been investigated by a wide range of biophysical techniques. Pulse-labeling hydrogen-deuterium exchange experiments monitored by mass spectrometry reveal that binding of the antibody fragment strongly inhibits the locally cooperative unfolding of the I56T and D67H variants and restores their global cooperativity to that characteristic of the wild-type protein. The antibody fragment was, however, not stable enough under the conditions used to explore its ability to perturb the aggregation behavior of the lysozyme amyloidogenic variants. We therefore engineered a more stable version of cAb-HuL22 by adding a disulfide bridge between the two beta-sheets in the hydrophobic core of the protein. The binding of this engineered antibody fragment to the amyloidogenic variants of lysozyme inhibited their aggregation into fibrils. These findings support the premise that the reduction in global cooperativity caused by the pathogenic mutations in the lysozyme gene is the determining feature underlying their amyloidogenicity. These observations indicate further that molecular targeting of enzyme active sites, and of protein binding sites in general, is an effective strategy for inhibiting or preventing the aberrant self-assembly process that is often a consequence of protein mutation and the origin of pathogenicity. Moreover, this work further demonstrates the unique properties of camelid single-domain antibody fragments as structural probes for studying the mechanism of aggregation and as potential inhibitors of fibril formation.
Journal of the American Chemical Society | 2011
Alexander K. Buell; Anne Dhulesia; Maria F. Mossuto; Nunilo Cremades; Janet R. Kumita; Mireille Dumoulin; Mark E. Welland; Tuomas P. J. Knowles; Xavier Salvatella; Christopher M. Dobson
The propensity of protein molecules to self-assemble into highly ordered, fibrillar aggregates lies at the heart of understanding many disorders ranging from Alzheimers disease to systemic lysozyme amyloidosis. In this paper we use highly accurate kinetic measurements of amyloid fibril growth in combination with spectroscopic tools to quantify the effect of modifications in solution conditions and in the amino acid sequence of human lysozyme on its propensity to form amyloid fibrils under acidic conditions. We elucidate and quantify the correlation between the rate of amyloid growth and the population of nonnative states, and we show that changes in amyloidogenicity are almost entirely due to alterations in the stability of the native state, while other regions of the global free-energy surface remain largely unmodified. These results provide insight into the complex dynamics of a macromolecule on a multidimensional energy landscape and point the way for a better understanding of amyloid diseases.
Clinical & Experimental Allergy | 2003
Gareth J. Murtagh; David B. Archer; Mireille Dumoulin; S. Ridout; Sharon Matthews; S. H. Arshad; Marcos Alcocer
Background The ability of an intact protein to reach the circulatory system may be a prerequisite to allergenicity and many allergens, particularly those from plant foods, have been found to be consistently more resistant to digestion by pepsin than other proteins.
Journal of Molecular Biology | 2002
Marcos Alcocer; Gareth J. Murtagh; Kevin Bailey; Mireille Dumoulin; Amparo Sarabia Meseguer; Martin J Parker; David B. Archer
We have cloned and expressed genes encoding the allergenic brazil nut 2S albumin (Ber e 1) and the sunflower albumin 8 (SFA8) in the methylotrophic yeast Pichia pastoris. We show that both proteins were secreted at high levels and that the purified proteins were properly folded. We also showed that Ber e 1 is glycosylated during secretion and that the glycan does not interfere with the folding or immunoreactivity. The disulphide map of the Ber e 1 protein was experimentally established and is in agreement with the conserved disulphide structure of other members of the 2S albumin family. A model three-dimensional structure of the allergen was generated. During the expression studies and through mutation we have also shown that alteration of the sequences around the Kex2 endoproteolytic processing site in the expressed fusion protein can compromise the secretion by targeting part of the protein for possible degradation. The secreted production of these properly folded sulphur-rich plant albumins presents an opportunity to delineate the attributes that make an allergen and to facilitate the diagnosis and therapy of type I allergy.
Journal of the American Chemical Society | 2010
Anne Dhulesia; Nunilo Cremades; Janet R. Kumita; Shang-Te Danny Hsu; Maria F. Mossuto; Mireille Dumoulin; Daniel Nietlispach; Mikael Akke; Xavier Salvatella; Christopher M. Dobson
The partial unfolding of human lysozyme underlies its conversion from the soluble state into amyloid fibrils observed in a fatal hereditary form of systemic amyloidosis. To understand the molecular origins of the disease, it is critical to characterize the structural and physicochemical properties of the amyloidogenic states of the protein. Here we provide a high-resolution view of the unfolding process at low pH for three different lysozyme variants, the wild-type protein and the mutants I56T and I59T, which show variable stabilities and propensities to aggregate in vitro. Using a range of biophysical techniques that includes differential scanning calorimetry and nuclear magnetic resonance spectroscopy, we demonstrate that thermal unfolding under amyloidogenic solution conditions involves a cooperative loss of native tertiary structure, followed by progressive unfolding of a compact, molten globule-like denatured state ensemble as the temperature is increased. The width of the temperature window over which the denatured ensemble progressively unfolds correlates with the relative amyloidogenicity and stability of these variants, and the region of lysozyme that unfolds first maps to that which forms the core of the amyloid fibrils formed under similar conditions. Together, these results present a coherent picture at atomic resolution of the initial events underlying amyloid formation by a globular protein.