Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireille H. Lahoud is active.

Publication


Featured researches published by Mireille H. Lahoud.


Journal of Immunology | 2005

Cutting Edge: Generation of Splenic CD8+ and CD8− Dendritic Cell Equivalents in Fms-Like Tyrosine Kinase 3 Ligand Bone Marrow Cultures

Shalin H. Naik; Anna I Proietto; Nicholas S. Wilson; Aleksandar Dakic; Petra Schnorrer; Martina Fuchsberger; Mireille H. Lahoud; Meredith O'Keeffe; Qi Xiang Shao; Wei Feng Chen; Jose A. Villadangos; Ken Shortman; Li Wu

We demonstrate that functional and phenotypic equivalents of mouse splenic CD8+ and CD8− conventional dendritic cell (cDC) subsets can be generated in vitro when bone marrow is cultured with fms-like tyrosine kinase 3 (flt3) ligand. In addition to CD45RAhigh plasmacytoid DC, two distinct CD24high and CD11bhigh cDC subsets were present, and these subsets showed equivalent properties to splenic CD8+ and CD8− cDC, respectively, in the following: 1) surface expression of CD11b, CD24, and signal regulatory protein-α; 2) developmental dependence on, and mRNA expression of, IFN regulatory factor-8; 3) mRNA expression of TLRs and chemokine receptors; 4) production of IL-12 p40/70, IFN-α, MIP-1α, and RANTES in response to TLR ligands; 5) expression of cystatin C; and 6) cross-presentation of exogenous Ag to CD8 T cells. Furthermore, despite lacking surface CD8 expression, the CD24high subset contained CD8 mRNA and up-regulated surface expression when transferred into mice. This culture system allows access to bona fide counterparts of the splenic DC subsets.


Journal of Experimental Medicine | 2002

Mouse Plasmacytoid Cells: Long-lived Cells, Heterogeneous in Surface Phenotype and Function, that Differentiate Into CD8+ Dendritic Cells Only after Microbial Stimulus

Meredith O'Keeffe; Hubertus Hochrein; David Vremec; Irina Caminschi; Joanna L. Miller; E. Margot Anders; Li Wu; Mireille H. Lahoud; Sandrine Henri; Bernadette Scott; Paul J. Hertzog; Lilliana Tatarczuch; Ken Shortman

The CD45RAhiCD11cint plasmacytoid predendritic cells (p-preDCs) of mouse lymphoid organs, when stimulated in culture with CpG or influenza virus, produce large amounts of type I interferons and transform without division into CD8+CD205− DCs. P-preDCs express CIRE, the murine equivalent of DC-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN). P-preDCs are divisible by CD4 expression into two subgroups differing in turnover rate and in response to Staphylococcus aureus. The kinetics of bromodeoxyuridine labeling and the results of transfer to normal recipient mice indicate that CD4− p-preDCs are the immediate precursors of CD4+ p-preDCs. Similar experiments indicate that p-preDCs are normally long lived and are not the precursors of the short-lived steady-state conventional DCs. However, in line with the culture studies on transfer to influenza virus-stimulated mice the p-preDCs transform into CD8+CD205− DCs, distinct from conventional CD8+CD205+ DCs. Hence as well as activating preexistant DCs, microbial infection induces a wave of production of a new DC subtype. The functional implications of this shift in the DC network remain to be determined.


Blood | 2008

The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement.

Irina Caminschi; Anna I Proietto; Fatma Ahmet; Susie Kitsoulis; Joo Shin Teh; Jennifer Chi Yi Lo; Alexandra Rizzitelli; Li Wu; David Vremec; Serani Lh van Dommelen; Ian K. Campbell; Eugene Maraskovsky; Hal Braley; Gayle M. Davey; Patricia L. Mottram; Nicholas C. van de Velde; Kent Jensen; Andrew M. Lew; Mark D. Wright; William R. Heath; Ken Shortman; Mireille H. Lahoud

A novel dendritic cell (DC)-restricted molecule, Clec9A, was identified by gene expression profiling of mouse DC subtypes. Based on sequence similarity, a human ortholog was identified. Clec9A encodes a type II membrane protein with a single extracellular C-type lectin domain. Both the mouse Clec9A and human CLEC9A were cloned and expressed, and monoclonal antibodies (mAbs) against each were generated. Surface staining revealed that Clec9A was selective for mouse DCs and was restricted to the CD8(+) conventional DC and plasmacytoid DC subtypes. A subset of human blood DCs also expressed CLEC9A. A single injection of mice with a mAb against Clec9A, which targets antigens (Ags) to the DCs, produced a striking enhancement of antibody responses in the absence of added adjuvants or danger signals, even in mice lacking Toll-like receptor signaling pathways. Such targeting also enhanced CD4 and CD8 T-cell responses. Thus, Clec9A serves as a new marker to distinguish subtypes of both mouse and human DCs. Furthermore, targeting Ags to DCs with antibodies to Clec9A is a promising strategy to enhance the efficiency of vaccines, even in the absence of adjuvants.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dendritic cells in the thymus contribute to T-regulatory cell induction

Anna I Proietto; Serani van van Dommelen; Penghui Zhou; Alexandra Rizzitelli; Angela D'Amico; Raymond J. Steptoe; Shalin H. Naik; Mireille H. Lahoud; Yang Liu; Pan Zheng; Ken Shortman; Li Wu

Central tolerance is established through negative selection of self-reactive thymocytes and the induction of T-regulatory cells (TRs). The role of thymic dendritic cells (TDCs) in these processes has not been clearly determined. In this study, we demonstrate that in vivo, TDCs not only play a role in negative selection but in the induction of TRs. TDCs include two conventional dendritic cell (DC) subtypes, CD8loSirpαhi/+ (CD8loSirpα+) and CD8hiSirpαlo/− (CD8loSirpα−), which have different origins. We found that the CD8hiSirpα+ DCs represent a conventional DC subset that originates from the blood and migrates into the thymus. Moreover, we show that the CD8loSirpα+ DCs demonstrate a superior capacity to induce TRs in vitro. Finally, using a thymic transplantation system, we demonstrate that the DCs in the periphery can migrate into the thymus, where they efficiently induce TR generation and negative selection.


Journal of Experimental Medicine | 2011

CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell–associated antigen

A. Nicole Desch; Gwendalyn J. Randolph; Kenneth M. Murphy; Emmanuel L. Gautier; Ross M. Kedl; Mireille H. Lahoud; Irina Caminschi; Ken Shortman; Peter M. Henson; Claudia V. Jakubzick

CD103-expressing dendritic cells in the lungs preferentially take up and cross-present antigen from apoptotic cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A

Juliana Idoyaga; Ashira Lubkin; Christopher Fiorese; Mireille H. Lahoud; Irina Caminschi; Yaoxing Huang; Anthony Rodriguez; Björn E. Clausen; Chae Gyu Park; Christine Trumpfheller; Ralph M. Steinman

Improved protein-based vaccines should facilitate the goal of effective vaccines against HIV and other pathogens. With respect to T cells, the efficiency of immunization, or “immunogenicity,” is improved by targeting vaccine proteins to maturing dendritic cells (DCs) within mAbs to DC receptors. Here, we compared the capacity of Langerin/CD207, DEC205/CD205, and Clec9A receptors, each expressed on the CD8+ DC subset in mice, to bring about immunization of microbial-specific T cells from the polyclonal repertoire, using HIV gag-p24 protein as an antigen. α-Langerin mAb targeted splenic CD8+ DCs selectively in vivo, whereas α-DEC205 and α-Clec9A mAbs targeted additional cell types. When the mAb heavy chains were engineered to express gag-p24, the α-Langerin, α-DEC205, and α-Clec9A fusion mAbs given along with a maturation stimulus induced comparable levels of gag-specific T helper 1 (Th1) and CD8+ T cells in BALB/c × C57BL/6 F1 mice. These immune T cells were more numerous than targeting the CD8− DC subset with α-DCIR2-gag-p24. In an in vivo assay in which gag-primed T cells were used to report the early stages of T-cell responses, α-Langerin, α-DEC205, and α-Clec9A also mediated cross-presentation to primed CD8+ T cells if, in parallel to antigen uptake, the DCs were stimulated with α-CD40. α-Langerin, α-DEC205, and α-Clec9A targeting greatly enhanced T-cell immunization relative to nonbinding control mAb or nontargeted HIV gag-p24 protein. Therefore, when the appropriate subset of DCs is targeted with a vaccine protein, several different receptors expressed by that subset are able to initiate combined Th1 and CD8+ immunity.


Immunity | 2012

The Dendritic Cell Receptor Clec9A Binds Damaged Cells via Exposed Actin Filaments

Jian-Guo Zhang; Peter E. Czabotar; Antonia Policheni; Irina Caminschi; Soo San Wan; Susie Kitsoulis; Kirsteen McInnes Tullett; Adeline Y. Robin; Rajini Brammananth; Mark F. van Delft; Jinhua Lu; Lorraine A. O'Reilly; Emma C. Josefsson; Benjamin T. Kile; Wei Jin Chin; Justine D. Mintern; Maya A. Olshina; Wilson Wong; Jake Baum; Mark D. Wright; David C. S. Huang; Narla Mohandas; Ross L. Coppel; Peter M. Colman; Nicos A. Nicola; Ken Shortman; Mireille H. Lahoud

The immune system must distinguish viable cells from cells damaged by physical and infective processes. The damaged cell-recognition molecule Clec9A is expressed on the surface of the mouse and human dendritic cell subsets specialized for the uptake and processing of material from dead cells. Clec9A recognizes a conserved component within nucleated and nonnucleated cells, exposed when cell membranes are damaged. We have identified this Clec9A ligand as a filamentous form of actin in association with particular actin-binding domains of cytoskeletal proteins. We have determined the crystal structure of the human CLEC9A C-type lectin domain and propose a functional dimeric structure with conserved tryptophans in the ligand recognition site. Mutation of these residues ablated CLEC9A binding to damaged cells and to the isolated ligand complexes. We propose that Clec9A provides targeted recruitment of the adaptive immune system during infection and can also be utilized to enhance immune responses generated by vaccines.


Journal of Immunology | 2011

Targeting Antigen to Mouse Dendritic Cells via Clec9A Induces Potent CD4 T Cell Responses Biased toward a Follicular Helper Phenotype

Mireille H. Lahoud; Fatma Ahmet; Susie Kitsoulis; Soo San Wan; David Vremec; Chin-Nien Lee; Belinda Phipson; Wei Shi; Gordon K. Smyth; Andrew M. Lew; Yu Kato; Scott N. Mueller; Gayle M. Davey; William R. Heath; Ken Shortman; Irina Caminschi

Three surface molecules of mouse CD8+ dendritic cells (DCs), also found on the equivalent human DC subpopulation, were compared as targets for Ab-mediated delivery of Ags, a developing strategy for vaccination. For the production of cytotoxic T cells, DEC-205 and Clec9A, but not Clec12A, were effective targets, although only in the presence of adjuvants. For Ab production, however, Clec9A excelled as a target, even in the absence of adjuvant. Potent humoral immunity was a result of the highly specific expression of Clec9A on DCs, which allowed longer residence of targeting Abs in the bloodstream, prolonged DC Ag presentation, and extended CD4 T cell proliferation, all of which drove highly efficient development of follicular helper T cells. Because Clec9A shows a similar expression pattern on human DCs, it has particular promise as a target for vaccines of human application.


Frontiers in Immunology | 2014

Harnessing Human Cross-Presenting CLEC9A(+)XCR1(+) Dendritic Cells for Immunotherapy.

Kirsteen M. Tullett; Mireille H. Lahoud; Kristen J. Radford

Dendritic cells (DC) are professional antigen presenting cells (APCs) that play a pivotal role in the induction and regulation of immune responses, including the induction of cytotoxic T lymphocyte (CTL) responses. They are an important focus for the development of vaccines against cancers and many pathogens, including HIV and malaria, where CTL responses are required for protection and disease eradication. DC loaded ex vivo with tumor antigen (Ag) have been administered as vaccines to cancer patients for over 15 years. They are well-tolerated and induce immune responses, including some clinical regressions, but there is clearly room for improvement (1). The DC network in both mice and humans is heterogeneous, with specialized DC subsets driving specific immune functions (2). New developments in our understanding of DC biology have identified a subset of DC characterized by the expression of novel markers CLEC9A (DNGR-1) (3, 4) and XCR1 (5, 6) as being important for the induction of CTL responses (7). Vaccine strategies that deliver Ag and activators directly to CLEC9A+XCR1+ DC in vivo promise to overcome many of the logistical issues associated with in vitro-derived vaccines, allowing precision and specificity of the desired immune response (8). Here, we discuss the biological properties of CLEC9A+XCR1+ DC that make them such attractive targets for CTL vaccines and new vaccine approaches to target them in vivo.


Journal of Experimental Medicine | 2007

Putative IKDCs are functionally and developmentally similar to natural killer cells, but not to dendritic cells.

Irina Caminschi; Fatma Ahmet; Klaus Heger; Jason Brady; Stephen L. Nutt; David Vremec; Suzanne Pietersz; Mireille H. Lahoud; Louis Schofield; Diana S. Hansen; Meredith O'Keeffe; Mark J. Smyth; Sammy Bedoui; Gayle M. Davey; Jose A. Villadangos; William R. Heath; Ken Shortman

Interferon-producing killer dendritic cells (IKDCs) have been described as possessing the lytic potential of NK cells and the antigen-presenting capacity of dendritic cells (DCs). In this study, we examine the lytic function and antigen-presenting capacity of mouse spleen IKDCs, including those found in DC preparations. IKDCs efficiently killed NK cell targets, without requiring additional activation stimuli. However, in our hands, when exposed to protein antigen or to MHC class II peptide, IKDCs induced little or no T cell proliferation relative to conventional DCs or plasmacytoid DCs, either before or after activation with CpG, or in several disease models. Certain developmental features indicated that IKDCs resembled NK cells more than DCs. IKDCs, like NK cells, did not express the transcription factor PU.1 and were absent from recombinase activating gene-2–null, common γ-chain–null (Rag2−/−Il2rg−/−) mice. When cultured with IL-15 and -18, IKDCs proliferated extensively, like NK cells. Under these conditions, a proportion of expanded IKDCs and NK cells expressed high levels of surface MHC class II. However, even such MHC class II+ IKDCs and NK cells induced poor T cell proliferative responses compared with DCs. Thus, IKDCs resemble NK cells functionally, and neither cell type could be induced to be effective antigen-presenting cells.

Collaboration


Dive into the Mireille H. Lahoud's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Shortman

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Wu

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Anna I Proietto

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

David Vremec

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Fatma Ahmet

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jian-Guo Zhang

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Lew

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge