Mireille Huc
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mireille Huc.
Remote Sensing | 2015
Olivier Hagolle; Mireille Huc; David Villa Pascual; Gérard Dedieu
The correction of atmospheric effects is one of the preliminary steps required to make quantitative use of time series of high resolution images from optical remote sensing satellites. An accurate atmospheric correction requires good knowledge of the aerosol optical thickness (AOT) and of the aerosol type. As a first step, this study compares the performances of two kinds of AOT estimation methods applied to FormoSat-2 and LandSat time series of images: a multi-spectral method that assumes a constant relationship between surface reflectance measurements and a multi-temporal method that assumes that the surface reflectances are stable with time. In a second step, these methods are combined to obtain more accurate and robust estimates. The estimated AOTs are compared to in situ measurements on several sites of the AERONET (Aerosol Robotic Network). The methods, based on either spectral or temporal criteria, provide accuracies better than 0.07 in most cases, but show degraded accuracies in some special cases, such as the absence of vegetation for the spectral method or a very quick variation of landscape for the temporal method. The combination of both methods in a new spectro-temporal method increases the robustness of the results in all cases.
IEEE Transactions on Geoscience and Remote Sensing | 2011
Patrice Bicheron; Virginie Amberg; Ludovic Bourg; David Petit; Mireille Huc; Bastien Miras; Carsten Brockmann; Olivier Hagolle; Steve Delwart; Franck Ranera; Marc Leroy; Olivier Arino
The GlobCover project has developed a service dedicated to the generation of multiyear global land cover maps at 300-m spatial resolution using as its main source of data the full-resolution full-swath (300 m) data (FRS) acquired by the MERIS sensor on-board the ENVISAT satellite. As multiple single daily orbits have to be combined in one single data set, an accurate relative and absolute geolocation of GlobCover orthorectified products is required and needs to be assessed. We describe in this paper the main steps of the orthorectification pre-processing chain as well as the validation methodology and geometric performance assessments. Final results are very satisfactory with an absolute geolocation error of 77-m rms and a relative geolocation error of 51-m rms.
Remote Sensing | 2016
Benjamin Tardy; Vincent Rivalland; Mireille Huc; Olivier Hagolle; Sébastien Marcq; Gilles Boulet
Land surface temperature (LST) is an important variable involved in the Earths surface energy and water budgets and a key component in many aspects of environmental research. The Landsat program, jointly carried out by NASA and the USGS, has been recording thermal infrared data for the past 40 years. Nevertheless, LST data products for Landsat remain unavailable. The atmospheric correction (AC) method commonly used for mono-window Landsat thermal data requires detailed information concerning the vertical structure (temperature, pressure) and the composition (water vapor, ozone) of the atmosphere. For a given coordinate, this information is generally obtained through either radio-sounding or atmospheric model simulations and is passed to the radiative transfer model (RTM) to estimate the local atmospheric correction parameters. Although this approach yields accurate LST data, results are relevant only near this given coordinate. To meet the scientific communitys demand for high-resolution LST maps, we developed a new software tool dedicated to processing Landsat thermal data. The proposed tool improves on the commonly-used AC algorithm by incorporating spatial variations occurring in the Earths atmosphere composition. The ERA-Interim dataset (ECMWFmeteorological organization) was used to retrieve vertical atmospheric conditions, which are available at a global scale with a resolution of 0.125 degrees and a temporal resolution of 6 h. A temporal and spatial linear interpolation of meteorological variables was performed to match the acquisition dates and coordinates of the Landsat images. The atmospheric correction parameters were then estimated on the basis of this reconstructed atmospheric grid using the commercial RTMsoftware MODTRAN. The needed surface emissivity was derived from the common vegetation index NDVI, obtained from the red and near-infrared (NIR) bands of the same Landsat image. This permitted an estimation of LST for the entire image without degradation in resolution. The software tool, named LANDARTs, which stands for Landsat automatic retrieval of surface temperatures, is fully automatic and coded in the programming language Python. In the present paper, LANDARTs was used for the local and spatial validation of surface temperature obtained from a Landsat dataset covering two climatically contrasting zones: southwestern France and central Tunisia. Long-term datasets of in situ surface temperature measurements for both locations were compared to corresponding Landsat LST data. This temporal comparison yielded RMSE values ranging from 1.84 • C–2.55 • C. Landsat surface temperature data obtained with LANDARTs were then spatially compared using the ASTER data products of kinetic surface temperatures (AST08) for both geographical zones. This comparison yielded a satisfactory RMSE of about 2.55 • C. Finally, a sensitivity analysis for the effect of spatial validation on the LST correction process showed a variability of up to 2 • C for an entire Landsat image, confirming that the proposed spatial approach improved the accuracy of Landsat LST estimations.
Remote Sensing | 2014
Michel Le Page; Jihad Toumi; S. Khabba; Olivier Hagolle; Adrien Tavernier; M.H. Kharrou; S. Er-Raki; Mireille Huc; Mohamed Kasbani; Abdelilah El Moutamanni; Mohamed Yousfi; Lionel Jarlan
This paper describes the setting and results of a real-time experiment of irrigation scheduling by a time series of optical satellite images under real conditions, which was carried out on durum wheat in the Haouz plain (Marrakech, Morocco), during the 2012/13 agricultural season. For the purpose of this experiment, the irrigation of a reference plot was driven by the farmer according to, mainly empirical, irrigation scheduling while test plot irrigations were being managed following the FAO-56 method, driven by remote sensing. Images were issued from the SPOT4 (Take5) data set, which aimed at delivering image time series at a decametric resolution with less than five-day satellite overpass similar to the time
Remote Sensing | 2016
Claire Marais Sicre; Jordi Inglada; Rémy Fieuzal; Frédéric Baup; Silvia Valero; Jérôme Cros; Mireille Huc; V. Demarez
In the context of climate change, agricultural managers have the imperative to combine sufficient productivity with durability of the resources. Many studies have shown the interest of recent satellite missions as suitable tools for agricultural surveys. Nevertheless, they are not predictive methods. A system able to detect summer crops as early as possible is important in order to obtain valuable information for a better water management strategy. The detection of summer crops before the beginning of the irrigation period is therefore our objective. The study area is located near Toulouse (southwestern France), and is a region of mixed farming with a wide variety of irrigated and non-irrigated crops. Using the reference data for the years concerned, a set of fixed thresholds are applied to a vegetation index (the Normalized Difference Vegetation Index, NDVI) for each agricultural season of multi-spectral satellite optical imagery acquired at decametric spatial resolutions from 2006 to 2013. The performance (i.e., accuracy) is contrasted according to the agricultural practices, the development states of the different crops and the number of acquisition dates (one to three in the results presented here). The detection of summer crops reaches 64% to 88% with a single date, 80% to 88% with two dates and 90% to 99% with three dates. The robustness of this method is tested for several years (showing an impact of meteorological conditions on the actual choice of images), several sensors and several resolutions.
Chaos | 2016
Sylvain Mangiarotti; Marie-Isabelle Peyre; Mireille Huc
An epidemic of Ebola Virus Disease (EVD) broke out in Guinea in December 2013. It was only identified in March 2014 while it had already spread out in Liberia and Sierra Leone. The spill over of the disease became uncontrollable and the epidemic could not be stopped before 2016. The time evolution of this epidemic is revisited here with the global modeling technique which was designed to obtain the deterministic models from single time series. A generalized formulation of this technique for multivariate time series is introduced. It is applied to the epidemic of EVD in West Africa focusing on the period between March 2014 and January 2015, that is, before any detected signs of weakening. Data gathered by the World Health Organization, based on the official publications of the Ministries of Health of the three main countries involved in this epidemic, are considered in our analysis. Two observed time series are used: the daily numbers of infections and deaths. A four-dimensional model producing a very complex dynamical behavior is obtained. The model is tested in order to investigate its skills and drawbacks. Our global analysis clearly helps to distinguish three main stages during the epidemic. A characterization of the obtained attractor is also performed. In particular, the topology of the chaotic attractor is analyzed and a skeleton is obtained for its structure.
Image and Signal Processing for Remote Sensing XXI | 2015
B. Petrucci; Mireille Huc; T. Feuvrier; C. Ruffel; O. Hagolle; V. Lonjou; C. Desjardins
For the production of Level2A products during Sentinel-2 commissioning in the Technical Expertise Center Sentinel-2 in CNES, CESBIO proposed to adapt the Venus Level-2 , taking advantage of the similarities between the two missions: image acquisition at a high frequency (2 days for Venus, 5 days with the two Sentinel-2), high resolution (5m for Venus, 10, 20 and 60m for Sentinel-2), images acquisition under constant viewing conditions. The Multi-Mission Atmospheric Correction and Cloud Screening (MACCS) tool was born: based on CNES Orfeo Toolbox Library, Venμs processor which was already able to process Formosat2 and VENμS data, was adapted to process Sentinel-2 and Landsat5-7 data; since then, a great effort has been made reviewing MACCS software architecture in order to ease the add-on of new missions that have also the peculiarity of acquiring images at high resolution, high revisit and under constant viewing angles, such as Spot4/Take5 and Landsat8. The recursive and multi-temporal algorithm is implemented in a core that is the same for all the sensors and that combines several processing steps: estimation of cloud cover, cloud shadow, water, snow and shadows masks, of water vapor content, aerosol optical thickness, atmospheric correction. This core is accessed via a number of plug-ins where the specificity of the sensor and of the user project are taken into account: products format, algorithmic processing chaining and parameters. After a presentation of MACCS architecture and functionalities, the paper will give an overview of the production facilities integrating MACCS and the associated specificities: the interest for this tool has grown worldwide and MACCS will be used for extensive production within the THEIA land data center and Agri-S2 project. Finally the paper will zoom on the use of MACCS during Sentinel-2 In Orbit Test phase showing the first Level-2A products.
Remote Sensing of Environment | 2007
Frédéric Baret; Olivier Hagolle; Bernhard Geiger; Patrice Bicheron; Bastien Miras; Mireille Huc; Béatrice Berthelot; Fernando Niño; Marie Weiss; Olivier Samain; J.-L. Roujean; Marc Leroy
Remote Sensing of Environment | 2012
Martin Claverie; V. Demarez; Benoît Duchemin; Olivier Hagolle; Danielle Ducrot; Claire Marais-Sicre; Jean-François Dejoux; Mireille Huc; Pascal Keravec; Pierre Béziat; Remy Fieuzal; Eric Ceschia; Gérard Dedieu
Hydrology and Earth System Sciences | 2014
Simon Gascoin; Olivier Hagolle; Mireille Huc; Lionel Jarlan; Jean-François Dejoux; C Szczypta; R. Marti; R Sánchez