Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireille J. Serlie is active.

Publication


Featured researches published by Mireille J. Serlie.


Diabetes | 2007

Pharmacological Inhibition of Glucosylceramide Synthase Enhances Insulin Sensitivity

Johannes M. F. G. Aerts; Roelof Ottenhoff; Andrew S. Powlson; Aldo Grefhorst; Marco van Eijk; Peter F. Dubbelhuis; Jan Aten; Folkert Kuipers; Mireille J. Serlie; Tom Wennekes; Jaswinder K. Sethi; Stephen O'Rahilly; Hermen S. Overkleeft

A growing body of evidence implicates ceramide and/or its glycosphingolipid metabolites in the pathogenesis of insulin resistance. We have developed a highly specific small molecule inhibitor of glucosylceramide synthase, an enzyme that catalyzes a necessary step in the conversion of ceramide to glycosphingolipids. In cultured 3T3-L1 adipocytes, the iminosugar derivative N-(5′-adamantane-1′-yl-methoxy)-pentyl-1-deoxynojirimycin (AMP-DNM) counteracted tumor necrosis factor-α–induced abnormalities in glycosphingolipid concentrations and concomitantly reversed abnormalities in insulin signal transduction. When administered to mice and rats, AMP-DNM significantly reduced glycosphingolipid but not ceramide concentrations in various tissues. Treatment of ob/ob mice with AMP-DNM normalized their elevated tissue glucosylceramide levels, markedly lowered circulating glucose levels, improved oral glucose tolerance, reduced A1C, and improved insulin sensitivity in muscle and liver. Similarly beneficial metabolic effects were seen in high fat–fed mice and ZDF rats. These findings provide further evidence that glycosphingolipid metabolites of ceramide may be involved in mediating the link between obesity and insulin resistance and that interference with glycosphingolipid biosynthesis might present a novel approach to the therapy of states of impaired insulin action such as type 2 diabetes.


Journal of Hepatology | 2014

Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

Anne Vrieze; Carolien Out; Susana Fuentes; Lisanne Jonker; Isaie Reuling; Ruud S. Kootte; Els van Nood; Frits Holleman; Max Knaapen; Johannes A. Romijn; Maarten R. Soeters; Ellen E. Blaak; Geesje M. Dallinga-Thie; Dorien Reijnders; Mariëtte T. Ackermans; Mireille J. Serlie; Filip K. Knop; Jenst J. Holst; Claude van der Ley; Ido P. Kema; Erwin G. Zoetendal; Willem M. de Vos; Joost B. L. Hoekstra; Erik S.G. Stroes; Albert K. Groen; Max Nieuwdorp

BACKGROUND & AIMS Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. RESULTS Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters. CONCLUSIONS Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566).


Blood | 2008

Hyperglycemia enhances coagulation and reduces neutrophil degranulation, whereas hyperinsulinemia inhibits fibrinolysis during human endotoxemia

Michiel E. Stegenga; Saskia N. van der Crabben; Regje M. E. Blümer; Marcel Levi; Joost C. M. Meijers; Mireille J. Serlie; Michael W. T. Tanck; Hans P. Sauerwein; Tom van der Poll

Type 2 diabetes is associated with altered immune and hemostatic responses. We investigated the selective effects of hyperglycemia and hyperinsulinemia on innate immune, coagulation, and fibrinolytic responses during systemic inflammation. Twenty-four healthy humans were studied for 8 hours during clamp experiments in which either plasma glucose, insulin, both, or none was increased, depending on randomization. Target plasma concentrations were 5 versus 12 mM for glucose, and 100 versus 400 pmol/L for insulin. After 3 hours, 4 ng/kg Escherichia coli endotoxin was injected intravenously to induce a systemic inflammatory and procoagulant response. Endotoxin administration induced cytokine release, activation of neutrophils, endothelium and coagulation, and inhibition of fibrinolysis. Hyperglycemia reduced neutrophil degranulation (plasma elastase levels, P < .001) and exaggerated coagulation (plasma concentrations of thrombin-antithrombin complexes and soluble tissue factor, both P < .001). Hyperinsulinemia attenuated fibrinolytic activity due to elevated plasminogen activator-inhibitor-1 levels (P < .001). Endothelial cell activation markers and cytokine concentrations did not differ between clamps. We conclude that in humans with systemic inflammation induced by intravenous endotoxin administration hyperglycemia impairs neutrophil degranulation and potentiates coagulation, whereas hyperinsulinemia inhibits fibrinolysis. These data suggest that type 2 diabetes patients may be especially vulnerable to prothrombotic events during inflammatory states.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver

Lars P. Klieverik; Sarah F. Janssen; Annelieke van Riel; Ewout Foppen; Peter H. Bisschop; Mireille J. Serlie; Anita Boelen; Mariëtte T. Ackermans; Hans P. Sauerwein; Eric Fliers; Andries Kalsbeek

Thyrotoxicosis increases endogenous glucose production (EGP) and induces hepatic insulin resistance. We have recently shown that these alterations can be modulated by selective hepatic sympathetic and parasympathetic denervation, pointing to neurally mediated effects of thyroid hormone on glucose metabolism. Here, we investigated the effects of central triiodothyronine (T3) administration on EGP. We used stable isotope dilution to measure EGP before and after i.c.v. bolus infusion of T3 or vehicle in euthyroid rats. To study the role of hypothalamic preautonomic neurons, bilateral T3 microdialysis in the paraventricular nucleus (PVN) was performed for 2 h. Finally, we combined T3 microdialysis in the PVN with selective hepatic sympathetic denervation to delineate the involvement of the sympathetic nervous system in the observed metabolic alterations. T3 microdialysis in the PVN increased EGP by 11 ± 4% (P = 0.020), while EGP decreased by 5 ± 8% (ns) in vehicle-treated rats (T3 vs. Veh, P = 0.030). Plasma glucose increased by 29 ± 5% (P = 0.0001) after T3 microdialysis versus 8 ± 3% in vehicle-treated rats (T3 vs. Veh, P = 0.003). Similar effects were observed after i.c.v. T3 administration. Effects of PVN T3 microdialysis were independent of plasma T3, insulin, glucagon, and corticosterone. However, selective hepatic sympathectomy completely prevented the effect of T3 microdialysis on EGP. We conclude that stimulation of T3-sensitive neurons in the PVN of euthyroid rats increases EGP via sympathetic projections to the liver, independently of circulating glucoregulatory hormones. This represents a unique central pathway for modulation of hepatic glucose metabolism by thyroid hormone.


EJNMMI research | 2011

Lower striatal dopamine D2/3 receptor availability in obese compared with non-obese subjects

Barbara A. de Weijer; Elsmarieke van de Giessen; Therese van Amelsvoort; Erik Boot; Breg Braak; Ignace M.J. Janssen; Arnold van de Laar; Eric Fliers; Mireille J. Serlie; Jan Booij

BackgroundObesity is a result of a relative excess in energy intake over energy expenditure. These processes are controlled by genetic, environmental, psychological and biological factors. One of the factors involved in the regulation of food intake and satiety is dopaminergic signalling. A small number of studies have reported that striatal dopamine D2/D3 receptor [D2/3R] availability is lower in morbidly obese subjects.MethodsTo confirm the role of D2/3R in obesity, we measured striatal D2/3R availability, using [123I]IBZM SPECT, in 15 obese women and 15 non-obese controls.ResultsStriatal D2/3R availability was 23% (p = 0.028) lower in obese compared with non-obese women.ConclusionThis study is an independent replication of the finding that severely obese subjects have lower striatal D2/3R availability. Our findings invigorate the evidence for lower striatal D2/3R availability in obesity and confirm the role of the striatal dopaminergic reward system in obesity.


Diabetes | 2009

A major role for perifornical orexin neurons in the control of glucose metabolism in rats

Chun-Xia Yi; Mireille J. Serlie; Mariëtte T. Ackermans; Ewout Foppen; Ruud M. Buijs; Hans P. Sauerwein; Eric Fliers; Andries Kalsbeek

OBJECTIVE The hypothalamic neuropeptide orexin influences (feeding) behavior as well as energy metabolism. Administration of exogenous orexin-A into the brain has been shown to increase both food intake and blood glucose levels. In the present study, we investigated the role of endogenous hypothalamic orexin release in glucose homeostasis in rats. RESEARCH DESIGN AND METHODS We investigated the effects of the hypothalamic orexin system on basal endogenous glucose production (EGP) as well as on hepatic and peripheral insulin sensitivity by changing orexinergic activity in the hypothalamus combined with hepatic sympathetic or parasympathetic denervation, two-step hyperinsulinemic-euglycemic clamps, immunohistochemistry, and RT-PCR studies. RESULTS Hypothalamic disinhibition of neuronal activity by the γ-aminobutyric acid receptor antagonist bicuculline (BIC) increased basal EGP, especially when BIC was administered in the perifornical area where orexin-containing neurons but not melanocortin-concentrating hormone–containing neurons were activated. The increased BIC-induced EGP was largely prevented by intracerebroventricular pretreatment with the orexin-1 receptor antagonist. Intracerebroventricular administration of orexin-A itself caused an increase in plasma glucose and prevented the daytime decrease of EGP. The stimulatory effect of intracerebroventricular orexin-A on EGP was prevented by hepatic sympathetic denervation. Plasma insulin clamped at two or six times the basal levels did not counteract the stimulatory effect of perifornical BIC on EGP, indicating hepatic insulin resistance. RT-PCR showed that stimulation of orexin neurons increased the expression of hepatic glucoregulatory enzymes. CONCLUSIONS Hypothalamic orexin plays an important role in EGP, most likely by changing the hypothalamic output to the autonomic nervous system. Disturbance of this pathway may result in unbalanced glucose homeostasis.


The Journal of Clinical Endocrinology and Metabolism | 2009

Early Endotoxemia Increases Peripheral and Hepatic Insulin Sensitivity in Healthy Humans

Saskia N. van der Crabben; Regje M. E. Blümer; Michiel E. Stegenga; Mariëtte T. Ackermans; Erik Endert; Michael W. T. Tanck; Mireille J. Serlie; Tom van der Poll; Hans P. Sauerwein

CONTEXT Sepsis-induced hypoglycemia is a well known, but rare, event of unknown origin. OBJECTIVE The aim of the study was to obtain insight into the mechanism of sepsis-induced hypoglycemia, focusing on glucose kinetics and insulin sensitivity measured with stable isotopes by using the model of human endotoxemia. DESIGN Glucose metabolism was measured during two hyperinsulinemic [insulin levels of 100 pmol/liter (low-dose clamp) and 400 pmol/liter (medium-dose clamp)] euglycemic (5 mmol/liter) clamps on two occasions: without or with lipopolysaccharide (LPS). SETTING The study was conducted at the Academic Medical Center, Metabolic and Clinical Research Unit (Amsterdam, The Netherlands). PARTICIPANTS Eighteen healthy male volunteers participated in the study. INTERVENTION A hyperinsulinemic euglycemic (5 mmol/liter) clamp with LPS (two groups of six subjects; insulin infusion at rates of either 10 or 40 mU.m(-2).min(-1)) or without LPS (n = 6; both insulin infusions in same subjects). MAIN OUTCOME MEASURE We measured hepatic and peripheral insulin sensitivity. RESULTS Hepatic insulin sensitivity, defined as a decrease in endogenous glucose production during hyperinsulinemia (100 pmol/liter), was higher in the LPS group compared to the control group (P = 0.010). Insulin-stimulated peripheral glucose uptake was higher in both clamps after LPS compared to the control setting (P = 0.006 and 0.010), despite a significant increase in the plasma concentrations of norepinephrine and cytokines in the LPS group during both clamps. CONCLUSIONS These data indicate that shortly (2 h) after administration of LPS, peripheral and hepatic insulin sensitivity increase. This may contribute to the hypoglycemia occurring in some patients with critical illness, especially in the setting of intensive insulin therapy.


Journal of Endocrinology | 2009

Central effects of thyronamines on glucose metabolism in rats

Lars P. Klieverik; Ewout Foppen; Mariëtte T. Ackermans; Mireille J. Serlie; Hans P. Sauerwein; Thomas S. Scanlan; David K. Grandy; Eric Fliers; Andries Kalsbeek

Thyronamines are naturally occurring, chemical relatives of thyroid hormone. Systemic administration of synthetic 3-iodothyronamine (T(1)AM) and - to a lesser extent - thyronamine (T(0)AM), leads to acute bradycardia, hypothermia, decreased metabolic rate, and hyperglycemia. This profile led us to hypothesize that the central nervous system is among the principal targets of thyronamines. We investigated whether a low dose i.c.v. infusion of synthetic thyronamines recapitulates the changes in glucose metabolism that occur following i.p. thyronamine administration. Plasma glucose, glucoregulatory hormones, and endogenous glucose production (EGP) using stable isotope dilution were monitored in rats before and 120 min after an i.p. (50 mg/kg) or i.c.v. (0.5 mg/kg) bolus infusion of T(1)AM, T(0)AM, or vehicle. To identify the peripheral effects of centrally administered thyronamines, drug-naive rats were also infused intravenously with low dose (0.5 mg/kg) thyronamines. Systemic T(1)AM rapidly increased EGP and plasma glucose, increased plasma glucagon, and corticosterone, but failed to change plasma insulin. Compared with i.p.-administered T(1)AM, a 100-fold lower dose administered centrally induced a more pronounced acute EGP increase and hyperglucagonemia while plasma insulin tended to decrease. Both systemic and central infusions of T(0)AM caused smaller increases in EGP, plasma glucose, and glucagon compared with T(1)AM. Neither T(1)AM nor T(0)AM influenced any of these parameters upon low dose i.v. administration. We conclude that central administration of low-dose thyronamines suffices to induce the acute alterations in glucoregulatory hormones and glucose metabolism following systemic thyronamine infusion. Our data indicate that thyronamines can act centrally to modulate glucose metabolism.


Diabetes | 2012

Glucocorticoid Signaling in the Arcuate Nucleus Modulates Hepatic Insulin Sensitivity

Chun-Xia Yi; Ewout Foppen; William Abplanalp; Yuanqing Gao; Anneke Alkemade; Susanne E. la Fleur; Mireille J. Serlie; Eric Fliers; Ruud M. Buijs; Matthias H. Tschöp; Andries Kalsbeek

Glucocorticoid receptors are highly expressed in the hypothalamic paraventricular nucleus (PVN) and arcuate nucleus (ARC). As glucocorticoids have pronounced effects on neuropeptide Y (NPY) expression and as NPY neurons projecting from the ARC to the PVN are pivotal for balancing feeding behavior and glucose metabolism, we investigated the effect of glucocorticoid signaling in these areas on endogenous glucose production (EGP) and insulin sensitivity by local retrodialysis of the glucocorticoid receptor agonist dexamethasone into the ARC or the PVN, in combination with isotope dilution and hyperinsulinemic–euglycemic clamp techniques. Retrodialysis of dexamethasone for 90 min into the ARC or the PVN did not have significant effects on basal plasma glucose concentration. During the hyperinsulinemic–euglycemic clamp, retrodialysis of dexamethasone into the ARC largely prevented the suppressive effect of hyperinsulinemia on EGP. Antagonizing the NPY1 receptors by intracerebroventricular infusion of its antagonist largely blocked the hepatic insulin resistance induced by dexamethasone in the ARC. The dexamethasone-ARC–induced inhibition of hepatic insulin sensitivity was also prevented by hepatic sympathetic denervation. These data suggest that glucocorticoid signaling specifically in the ARC neurons modulates hepatic insulin responsiveness via NPY and the sympathetic system, which may add to our understanding of the metabolic impact of clinical conditions associated with hypercortisolism.


The Journal of Clinical Endocrinology and Metabolism | 2009

Type 2 iodothyronine deiodinase in skeletal muscle: Effects of hypothyroidism and fasting

Maarten R. Soeters; Eric Fliers; Mireille J. Serlie; Jacobus Burggraaf; Martijn van Doorn; Agatha A. van der Klaauw; Johannes A. Romijn; Johannes W. A. Smit; Eleonora P. M. Corssmit; Theo J. Visser

CONTEXT The iodothyronine deiodinases D1, D2, and D3 enable tissue-specific adaptation of thyroid hormone levels in response to various conditions, such as hypothyroidism or fasting. The possible expression of D2 mRNA in skeletal muscle is intriguing because this enzyme could play a role in systemic as well as local T3 production. OBJECTIVE We determined D2 activity and D2 mRNA expression in human skeletal muscle biopsies under control conditions and during hypothyroidism, fasting, and hyperinsulinemia. DESIGN This was a prospective study. SETTING The study was conducted at a university hospital. PATIENTS We studied 11 thyroidectomized patients with differentiated thyroid carcinoma (DTC) on and after 4 wk off T4( replacement and six healthy lean subjects in the fasting state and during hyperinsulinemia after both 14 and 62 h of fasting. MEAN OUTCOME MEASURES D2 activity and D2 mRNA levels were measured in skeletal muscle samples. RESULTS No differences were observed in muscle D2 mRNA levels in DTC patients on and off T4 replacement therapy. In healthy subjects, muscle D2 mRNA levels were lower after 62 h compared to 14 h of fasting. Insulin increased mRNA expression after 62 h, but not after 14 h of fasting. Skeletal muscle D2 activities were very low and not influenced by hypothyroidism and fasting. CONCLUSION Human skeletal muscle D2 mRNA expression is modulated by fasting and insulin, but not by hypothyroidism. The lack of a clear effect of D2 mRNA modulation on the observed low D2 activities questions the physiological relevance of D2 activity in human skeletal muscle.

Collaboration


Dive into the Mireille J. Serlie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Fliers

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Brands

Academic Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge