Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mireille Ledevin is active.

Publication


Featured researches published by Mireille Ledevin.


American Journal of Pathology | 2011

Systemic Delivery of Allogenic Muscle Stem Cells Induces Long-Term Muscle Repair and Clinical Efficacy in Duchenne Muscular Dystrophy Dogs

Karl Rouger; Thibaut Larcher; Laurence Dubreil; Jack-Yves Deschamps; Caroline Le Guiner; Grégory Jouvion; Bruno Delorme; Blandine Lieubeau; Marine Carlus; Benoît Fornasari; Marine Theret; Priscilla Orlando; Mireille Ledevin; Céline Zuber; Isabelle Leroux; Stéphane Deleau; Lydie Guigand; Isabelle Testault; Elisabeth Le Rumeur; Marc Fiszman; Yan Cherel

Duchenne muscular dystrophy (DMD) is a genetic progressive muscle disease resulting from the lack of dystrophin and without effective treatment. Adult stem cell populations have given new impetus to cell-based therapy of neuromuscular diseases. One of them, muscle-derived stem cells, isolated based on delayed adhesion properties, contributes to injured muscle repair. However, these data were collected in dystrophic mice that exhibit a relatively mild tissue phenotype and clinical features of DMD patients. Here, we characterized canine delayed adherent stem cells and investigated the efficacy of their systemic delivery in the clinically relevant DMD animal model to assess potential therapeutic application in humans. Delayed adherent stem cells, named MuStem cells (muscle stem cells), were isolated from healthy dog muscle using a preplating technique. In vitro, MuStem cells displayed a large expansion capacity, an ability to proliferate in suspension, and a multilineage differentiation potential. Phenotypically, they corresponded to early myogenic progenitors and uncommitted cells. When injected in immunosuppressed dystrophic dogs, they contributed to myofiber regeneration, satellite cell replenishment, and dystrophin expression. Importantly, their systemic delivery resulted in long-term dystrophin expression, muscle damage course limitation with an increased regeneration activity and an interstitial expansion restriction, and persisting stabilization of the dogs clinical status. These results demonstrate that MuStem cells could provide an attractive therapeutic avenue for DMD patients.


Gene Therapy | 2014

Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats.

Thomas Bucher; Laurence Dubreil; Marie-Anne Colle; Maud Maquigneau; Johan Deniaud; Mireille Ledevin; Philippe Moullier; Béatrice Joussemet

Systemic and intracerebrospinal fluid delivery of adeno-associated virus serotype 9 (AAV9) has been shown to achieve widespread gene delivery to the central nervous system (CNS). However, after systemic injection, the neurotropism of the vector has been reported to vary according to age at injection, with greater neuronal transduction in newborns and preferential glial cell tropism in adults. This difference has not yet been reported after cerebrospinal fluid (CSF) delivery. The present study analyzed both neuronal and glial cell transduction in the CNS of cats according to age of AAV9 CSF injection. In both newborns and young cats, administration of AAV9-GFP in the cisterna magna resulted in high levels of motor neurons (MNs) transduction from the cervical (84±5%) to the lumbar (99±1%) spinal cord, demonstrating that the remarkable tropism of AAV9 for MNs is not affected by age at CSF delivery. Surprisingly, numerous oligodendrocytes were also transduced in the brain and in the spinal cord white matter of young cats, but not of neonates, indicating that (i) age of CSF delivery influences the tropism of AAV9 for glial cells and (ii) AAV9 intracisternal delivery could be relevant for both the treatment of MN and demyelinating disorders.


ACS Nano | 2017

Multi-harmonic Imaging in the Second Near-Infrared Window of Nanoparticle-Labeled Stem Cells as a Monitoring Tool in Tissue Depth

Laurence Dubreil; Isabelle Leroux; Mireille Ledevin; Cindy Schleder; Lydie Lagalice; Claire Lovo; Romain Fleurisson; Solène Passemard; Vasyl Kilin; Sandrine Gerber-Lemaire; Marie-Anne Colle; Luigi Bonacina; Karl Rouger

In order to assess the therapeutic potential of cell-based strategies, it is of paramount importance to elaborate and validate tools for monitoring the behavior of injected cells in terms of tissue dissemination and engraftment properties. Here, we apply bismuth ferrite harmonic nanoparticles (BFO HNPs) to in vitro expanded human skeletal muscle-derived stem cells (hMuStem cells), an attractive therapeutic avenue for patients suffering from Duchenne muscular dystrophy (DMD). We demonstrate the possibility of stem cell labeling with HNPs. We also show that the simultaneous acquisition of second- and third-harmonic generation (SHG and THG) from BFO HNPs helps separate their response from tissue background, with a net increase in imaging selectivity, which could be particularly important in pathologic context that is defined by a highly remodelling tissue. We demonstrate the possibility of identifying <100 nm HNPs in depth of muscle tissue at more than 1 mm from the surface, taking full advantage of the extended imaging penetration depth allowed by multiphoton microscopy in the second near-infrared window (NIR-II). Based on this successful assessment, we monitor over 14 days any modification on proliferation and morphology features of hMuStem cells upon exposure to PEG-coated BFO HNPs at different concentrations, revealing their high biocompatibility. Successively, we succeed in detecting individual HNP-labeled hMuStem cells in skeletal muscle tissue after their intramuscular injection.


PLOS ONE | 2015

Differential Gene Expression Profiling of Dystrophic Dog Muscle after MuStem Cell Transplantation

Florence Robriquet; Aurélie Lardenois; Candice Babarit; Thibaut Larcher; Laurence Dubreil; Isabelle Leroux; Céline Zuber; Mireille Ledevin; Jack-Yves Deschamps; Yves Fromes; Yan Cherel; Laëtitia Guével; Karl Rouger

Background Several adult stem cell populations exhibit myogenic regenerative potential, thus representing attractive candidates for therapeutic approaches of neuromuscular diseases such as Duchenne Muscular Dystrophy (DMD). We have recently shown that systemic delivery of MuStem cells, skeletal muscle-resident stem cells isolated in healthy dog, generates the remodelling of muscle tissue and gives rise to striking clinical benefits in Golden Retriever Muscular Dystrophy (GRMD) dog. This global effect, which is observed in the clinically relevant DMD animal model, leads us to question here the molecular pathways that are impacted by MuStem cell transplantation. To address this issue, we compare the global gene expression profile between healthy, GRMD and MuStem cell treated GRMD dog muscle, four months after allogenic MuStem cell transplantation. Results In the dystrophic context of the GRMD dog, disease-related deregulation is observed in the case of 282 genes related to various processes such as inflammatory response, regeneration, calcium ion binding, extracellular matrix organization, metabolism and apoptosis regulation. Importantly, we reveal the impact of MuStem cell transplantation on several molecular and cellular pathways based on a selection of 31 genes displaying signals specifically modulated by the treatment. Concomitant with a diffuse dystrophin expression, a histological remodelling and a stabilization of GRMD dog clinical status, we show that cell delivery is associated with an up-regulation of genes reflecting a sustained enhancement of muscle regeneration. We also identify a decreased mRNA expression of a set of genes having metabolic functions associated with lipid homeostasis and energy. Interestingly, ubiquitin-mediated protein degradation is highly enhanced in GRMD dog muscle after systemic delivery of MuStem cells. Conclusions Overall, our results provide the first high-throughput characterization of GRMD dog muscle and throw new light on the complex molecular/cellular effects associated with muscle repair and the clinical efficacy of MuStem cell-based therapy.


Journal of General Virology | 2014

Shortening the unstructured, interdomain region of the non-structural protein NS1 of an avian H1N1 influenza virus increases its replication and pathogenicity in chickens

Sascha Trapp; Denis Soubieux; Hélène Marty; Evelyne Esnault; Thomas W. Hoffmann; Margaux Chandenier; Adrien Lion; Emmanuel Kut; Pascale Quéré; Thibaut Larcher; Mireille Ledevin; Sandie Munier; Nadia Naffakh; Daniel Marc

Currently circulating H5N1 influenza viruses have undergone a complex evolution since the appearance of their progenitor A/Goose/Guangdong/1/96 in 1996. After the eradication of the H5N1 viruses that emerged in Hong Kong in 1997 (HK/97 viruses), new genotypes of H5N1 viruses emerged in the same region in 2000 that were more pathogenic for both chickens and mice than HK/97 viruses. These, as well as virtually all highly pathogenic H5N1 viruses since 2000, harbour a deletion of aa 80-84 in the unstructured region of the non-structural (NS) protein NS1 linking its RNA-binding domain to its effector domain. NS segments harbouring this mutation have since been found in non-H5N1 viruses and we asked whether this 5 aa deletion could have a general effect not limited to the NS1 of H5N1 viruses. We genetically engineered this deletion in the NS segment of a duck-origin avian H1N1 virus, and compared the in vivo and in vitro properties of the WT and NSdel8084 viruses. In experimentally infected chickens, the NSdel8084 virus showed both an increased replication potential and an increased pathogenicity. This in vivo phenotype was correlated with a higher replicative efficiency in vitro, both in embryonated eggs and in a chicken lung epithelial cell line. Our data demonstrated that the increased replicative potential conferred by this small deletion was a general feature not restricted to NS1 from H5N1 viruses and suggested that viruses acquiring this mutation may be selected positively in the future.


Scientific Reports | 2016

Altered DNA methylation associated with an abnormal liver phenotype in a cattle model with a high incidence of perinatal pathologies

Hélène Kiefer; Luc Jouneau; Evelyne Campion; Delphine Rousseau-Ralliard; Thibaut Larcher; Marie-Laure Martin-Magniette; Sandrine Balzergue; Mireille Ledevin; Audrey Prezelin; Pascale Chavatte-Palmer; Y. Heyman; Christophe Richard; Daniel Le Bourhis; Jean-Paul Renard; Hélène Jammes

Cloning enables the generation of both clinically normal and pathological individuals from the same donor cells, and may therefore be a DNA sequence-independent driver of phenotypic variability. We took advantage of cattle clones with identical genotypes but different developmental abilities to investigate the role of epigenetic factors in perinatal mortality, a complex trait with increasing prevalence in dairy cattle. We studied livers from pathological clones dying during the perinatal period, clinically normal adult clones with the same genotypes as perinatal clones and conventional age-matched controls. The livers from deceased perinatal clones displayed histological lesions, modifications to quantitative histomorphometric and metabolic parameters such as glycogen storage and fatty acid composition, and an absence of birth-induced maturation. In a genome-wide epigenetic analysis, we identified DNA methylation patterns underlying these phenotypic alterations and targeting genes relevant to liver metabolism, including the type 2 diabetes gene TCF7L2. The adult clones were devoid of major phenotypic and epigenetic abnormalities in the liver, ruling out the effects of genotype on the phenotype observed. These results thus provide the first demonstration of a genome-wide association between DNA methylation and perinatal mortality in cattle, and highlight epigenetics as a driving force for phenotypic variability in farmed animals.


Proteomics | 2016

Quantitative proteome profiling of dystrophic dog skeletal muscle reveals a stabilized muscular architecture and protection against oxidative stress after systemic delivery of MuStem cells.

Aurélie Lardenois; Sabrina Jagot; Mélanie Lagarrigue; Blandine Guével; Mireille Ledevin; Thibaut Larcher; Laurence Dubreil; Charles Pineau; Karl Rouger; Laëtitia Guével

Proteomic profiling plays a decisive role in the elucidation of molecular signatures representative of a specific clinical context. MuStem cell based therapy represents a promising approach for clinical applications to cure Duchenne muscular dystrophy (DMD). To expand our previous studies collected in the clinically relevant DMD animal model, we decided to investigate the skeletal muscle proteome 4 months after systemic delivery of allogenic MuStem cells. Quantitative proteomics with isotope‐coded protein labeling was used to compile quantitative changes in the protein expression profiles of muscle in transplanted Golden Retriever muscular dystrophy (GRMD) dogs as compared to Golden Retriever muscular dystrophy dogs. A total of 492 proteins were quantified, including 25 that were overrepresented and 46 that were underrepresented after MuStem cell transplantation. Interestingly, this study demonstrates that somatic stem cell therapy impacts on the structural integrity of the muscle fascicle by acting on fibers and its connections with the extracellular matrix. We also show that cell infusion promotes protective mechanisms against oxidative stress and favors the initial phase of muscle repair. This study allows us to identify putative candidates for tissue markers that might be of great value in objectively exploring the clinical benefits resulting from our cell‐based therapy for DMD. All MS data have been deposited in the ProteomeXchange with identifier PXD001768 (http://proteomecentral.proteomexchange.org/dataset/PXD001768).


BMC Musculoskeletal Disorders | 2016

Identification in GRMD dog muscle of critical miRNAs involved in pathophysiology and effects associated with MuStem cell transplantation.

Florence Robriquet; Candice Babarit; Thibaut Larcher; Laurence Dubreil; Mireille Ledevin; Hélicia Goubin; Karl Rouger; Laëtitia Guével

BackgroundDuchenne muscular dystrophy (DMD) is an X-linked muscle disease that leads to fibre necrosis and progressive paralysis. At present, DMD remains a lethal disease without any effective treatment, requiring a better understanding of the pathophysiological processes and comprehensive assessment of the newly identified therapeutic strategies. MicroRNAs including members of the muscle-specific myomiR family have been identified as being deregulated in muscle of DMD patients and in mdx mice used as a model for DMD. In recent years, the Golden Retriever muscular dystrophy (GRMD) dog has appeared as the crucial animal model for objectively assessing the potential of new innovative approaches. Here, we first aim at establishing the muscle expression pattern of five selected miRNAs in this clinically relevant model to determine if they are similarly affected compared with other DMD contexts. Second, we attempt to show whether these miRNAs could be impacted by the systemic delivery of a promising stem cell candidate (referred to as MuStem cells) to implement our knowledge on its mode of action and/or identify markers associated with cell therapy efficacy.MethodsA comparative study of miRNAs expression levels and cellular localization was performed on 9-month-old healthy dogs, as well as on three sub-sets of GRMD dog (without immunosuppression or cell transplantation, with continuous immunosuppressive regimen and with MuStem cell transplantation under immunosuppression), using RT-qPCR and in situ hybridization.ResultsWe find that miR-222 expression is markedly up-regulated in GRMD dog muscle compared to healthy dog, while miR-486 tends to be down-expressed. Intriguingly, the expression of miR-1, miR-133a and miR-206 does not change. In situ hybridization exploration reveals, for the first time, that miR-486 and miR-206 are mainly localized in newly regenerated fibres in GRMD dog muscle. In addition, we show that cyclosporine-based immunosuppression, classically used in allogeneic cell transplantation, exclusively impacts the miR-206 expression. Finally, we demonstrate that intra-arterial administration of MuStem cells results in up-regulation of miR-133a and miR-222 concomitantly with a down-expression of two sarcomeric proteins corresponding to miR-222 targets.ConclusionWe point out a differential muscle expression of miR-222 and miR-486 associated with the pathophysiology of the clinically relevant GRMD dog model with a tissue localization focused on regenerated fibres. We also establish a modified expression of miR-133a and miR-222 subsequent to MuStem cell infusion.


Toxics | 2016

Fish Reproduction Is Disrupted upon Lifelong Exposure to Environmental PAHs Fractions Revealing Different Modes of Action

Caroline Vignet; Thibaut Larcher; Blandine Davail; Lucette Joassard; Karyn Le Menach; Tiphaine Guionnet; Laura Lyphout; Mireille Ledevin; Manon Goubeau; Hélène Budzinski; Marie-Laure Bégout; Xavier Cousin

Polycyclic aromatic hydrocarbons (PAHs) constitute a large family of organic pollutants emitted in the environment as complex mixtures, the compositions of which depend on origin. Among a wide range of physiological defects, PAHs are suspected to be involved in disruption of reproduction. In an aquatic environment, the trophic route is an important source of chronic exposure to PAHs. Here, we performed trophic exposure of zebrafish to three fractions of different origin, one pyrolytic and two petrogenic. Produced diets contained PAHs at environmental concentrations. Reproductive traits were analyzed at individual, tissue and molecular levels. Reproductive success and cumulative eggs number were disrupted after exposure to all three fractions, albeit to various extents depending on the fraction and concentrations. Histological analyses revealed ovary maturation defects after exposure to all three fractions as well as degeneration after exposure to a pyrolytic fraction. In testis, hypoplasia was observed after exposure to petrogenic fractions. Genes expression analysis in gonads has allowed us to establish common pathways such as endocrine disruption or differentiation/maturation defects. Taken altogether, these results indicate that PAHs can indeed disrupt fish reproduction and that different fractions trigger different pathways resulting in different effects.


Cell Transplantation | 2018

Vascular Delivery of Allogeneic MuStem Cells in Dystrophic Dogs Requires Only Short-Term Immunosuppression to Avoid Host Immunity and Generate Clinical/Tissue Benefits

Judith Lorant; Thibaut Larcher; Nicolas Jaulin; Benoit Hédan; Aurélie Lardenois; Isabelle Leroux; Laurence Dubreil; Mireille Ledevin; Hélicia Goubin; Sophie Moullec; Jack-Yves Deschamps; Chantal Thorin; Catherine André; Oumeya Adjali; Karl Rouger

Growing demonstrations of regenerative potential for some stem cells led recently to promising therapeutic proposals for neuromuscular diseases. We have shown that allogeneic MuStem cell transplantation into Golden Retriever muscular dystrophy (GRMD) dogs under continuous immunosuppression (IS) leads to persistent clinical stabilization and muscle repair. However, long-term IS in medical practice is associated with adverse effects raising safety concerns. Here, we investigate whether the IS removal or its restriction to the transplantation period could be considered. Dogs aged 4–5 months old received vascular infusions of allogeneic MuStem cells without IS (GRMDMU/no-IS) or under transient IS (GRMDMU/tr-IS). At 5 months post-infusion, persisting clinical status improvement of the GRMDMU/tr-IS dogs was observed while GRMDMU/no-IS dogs exhibited no benefit. Histologically, only 9-month-old GRMDMU/tr-IS dogs showed an increased muscle regenerative activity. A mixed cell reaction with the host peripheral blood mononucleated cells (PBMCs) and corresponding donor cells revealed undetectable to weak lymphocyte proliferation in GRMDMU/tr-IS dogs compared with a significant proliferation in GRMDMU/no-IS dogs. Importantly, any dog group showed neither cellular nor humoral anti-dystrophin responses. Our results show that transient IS is necessary and sufficient to sustain allogeneic MuStem cell transplantation benefits and prevent host immunity. These findings provide useful critical insight to designing therapeutic strategies.

Collaboration


Dive into the Mireille Ledevin's collaboration.

Top Co-Authors

Avatar

Thibaut Larcher

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Laurence Dubreil

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Karl Rouger

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Isabelle Leroux

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Candice Babarit

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Cherel

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge