Mirela Milescu
University of Missouri
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mirela Milescu.
Nature | 2005
L. Revell Phillips; Mirela Milescu; Yingying Li-Smerin; Joseph A. Mindell; Jae I. I. Kim; Kenton J. Swartz
The opening and closing of voltage-activated Na+, Ca2+ and K+ (Kv) channels underlies electrical and chemical signalling throughout biology, yet the structural basis of voltage sensing is unknown. Hanatoxin is a tarantula toxin that inhibits Kv channels by binding to voltage-sensor paddles, crucial helix-turn-helix motifs within the voltage-sensing domains that are composed of S3b and S4 helices. The active surface of the toxin is amphipathic, and related toxins have been shown to partition into membranes, raising the possibility that the toxin is concentrated in the membrane and interacts only weakly and transiently with the voltage sensors. Here we examine the kinetics and state dependence of the toxin–channel interaction and the physical location of the toxin in the membrane. We find that hanatoxin forms a strong and stable complex with the voltage sensors, far outlasting fluctuations of the voltage sensors between resting (closed) conformations at negative voltages and activated (open) conformations at positive voltages. Toxin affinity is reduced by voltage-sensor activation, explaining why the toxin stabilizes the resting conformation. We also find that when hanatoxin partitions into membranes it is localized to an interfacial region, with Trp 30 positioned about 8.5 Å from the centre of the bilayer. These results demonstrate that voltage-sensor paddles activate with a toxin as cargo, and suggest that the paddles traverse no more than the outer half of the bilayer during activation.
Nature Structural & Molecular Biology | 2009
Mirela Milescu; Frank Bosmans; Seungkyu Lee; AbdulRasheed A. Alabi; Jae Il Kim; Kenton J. Swartz
Voltage-activated ion channels open and close in response to changes in voltage, a property that is essential for generating nerve impulses. Studies on voltage-activated potassium (Kv) channels show that voltage-sensor activation is sensitive to the composition of lipids in the surrounding membrane. Here we explore the interaction of lipids with S1–S4 voltage-sensing domains and find that the conversion of the membrane lipid sphingomyelin to ceramide-1-phosphate alters voltage-sensor activation in an S1–S4 voltage-sensing protein lacking an associated pore domain, and that the S3b–S4 paddle motif determines the effects of lipid modification on Kv channels. Using tarantula toxins that bind to paddle motifs within the membrane, we identify mutations in the paddle motif that weaken toxin binding by disrupting lipid-paddle interactions. Our results suggest that lipids bind to voltage-sensing domains and demonstrate that the pharmacological sensitivities of voltage-activated ion channels are influenced by the surrounding lipid membrane.
The Journal of General Physiology | 2007
Mirela Milescu; Jan Vobecky; Soung Hun Roh; Sung H. Kim; Hoi J. Jung; Jae Il Kim; Kenton J. Swartz
Voltage-activated ion channels are essential for electrical signaling, yet the mechanism of voltage sensing remains under intense investigation. The voltage-sensor paddle is a crucial structural motif in voltage-activated potassium (Kv) channels that has been proposed to move at the protein–lipid interface in response to changes in membrane voltage. Here we explore whether tarantula toxins like hanatoxin and SGTx1 inhibit Kv channels by interacting with paddle motifs within the membrane. We find that these toxins can partition into membranes under physiologically relevant conditions, but that the toxin–membrane interaction is not sufficient to inhibit Kv channels. From mutagenesis studies we identify regions of the toxin involved in binding to the paddle motif, and those important for interacting with membranes. Modification of membranes with sphingomyelinase D dramatically alters the stability of the toxin–channel complex, suggesting that tarantula toxins interact with paddle motifs within the membrane and that they are sensitive detectors of lipid–channel interactions.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Mihaela Mihailescu; Dmitriy Krepkiy; Mirela Milescu; Klaus Gawrisch; Kenton J. Swartz; Stephen H. White
Significance Tarantula venom contains protein toxins that interact with diverse families of ion channels and alter their activity. A number of tarantula toxins are known to interact with membranes and are thought to bind to ion channel proteins within the lipid bilayer. In the present study, we find that tarantula toxins influence the structure and dynamics of the lipid bilayer, and that the toxin orients itself within membranes to facilitate formation of the toxin–channel complexes. Our results have implications for the mechanisms of toxin action on ion channels, and more generally for protein–protein interactions within membranes. Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor.
Biophysical Journal | 2010
Hyun Ho Jung; Hoi Jong Jung; Mirela Milescu; Chul Won Lee; Seungkyu Lee; Ju Yeon Lee; Young-Jae Eu; Ha Hyung Kim; Kenton J. Swartz; Jae Il Kim
Amphipathic protein toxins from tarantula venom inhibit voltage-activated potassium (Kv) channels by binding to a critical helix-turn-helix motif termed the voltage sensor paddle. Although these toxins partition into membranes to bind the paddle motif, their structure and orientation within the membrane are unknown. We investigated the interaction of a tarantula toxin named SGTx with membranes using both fluorescence and NMR spectroscopy. Depth-dependent fluorescence-quenching experiments with brominated lipids suggest that Trp30 in SGTx is positioned approximately 9 A from the center of the bilayer. NMR spectra reveal that the inhibitor cystine knot structure of the toxin does not radically change upon membrane partitioning. Transferred cross-saturation NMR experiments indicate that the toxins hydrophobic protrusion contacts the hydrophobic core of the membrane, whereas most surrounding polar residues remain at interfacial regions of the bilayer. The inferred orientation of the toxin reveals a twofold symmetry in the arrangement of basic and hydrophobic residues, a feature that is conserved among tarantula toxins. These results have important implications for regions of the toxin involved in recognizing membranes and voltage-sensor paddles, and for the mechanisms by which tarantula toxins alter the activity of different types of ion channels.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Frank Bosmans; Mirela Milescu; Kenton J. Swartz
Palmitoylation is a common lipid modification known to regulate the functional properties of various proteins and is a vital step in the biosynthesis of voltage-activated sodium (Nav) channels. We discovered a mutation in an intracellular loop of rNav1.2a (G1079C), which results in a higher apparent affinity for externally applied PaurTx3 and ProTx-II, two voltage sensor toxins isolated from tarantula venom. To explore whether palmitoylation of the introduced cysteine underlies this observation, we compared channel susceptibility to a range of animal toxins in the absence and presence of 2-Br-palmitate, a palmitate analog that prevents palmitate incorporation into proteins, and found that palmitoylation contributes to the increased affinity of PaurTx3 and ProTx-II for G1079C. Further investigations with 2-Br-palmitate revealed that palmitoylation can regulate the gating and pharmacology of wild-type (wt) rNav1.2a. To identify rNav1.2a palmitoylation sites contributing to these phenomena, we substituted three endogenous cysteines predicted to be palmitoylated and found that the gating behavior of this triple cysteine mutant is similar to wt rNav1.2a treated with 2-Br-palmitate. As with chemically depalmitoylated rNav1.2a channels, this mutant also exhibits an increased susceptibility for PaurTx3. Additional mutagenesis experiments showed that palmitoylation of one cysteine in particular (C1182) primarily influences PaurTx3 sensitivity and may enhance the inactivation process of wt rNav1.2a. Overall, our results demonstrate that lipid modifications are capable of altering the gating and pharmacological properties of rNav1.2a.
eLife | 2015
Kanchan Gupta; Maryam Zamanian; Chanhyung Bae; Mirela Milescu; Dmitriy Krepkiy; Drew C. Tilley; Jon T. Sack; Vladimir Yarov-Yarovoy; Jae Il Kim; Kenton J. Swartz
Tarantula toxins that bind to voltage-sensing domains of voltage-activated ion channels are thought to partition into the membrane and bind to the channel within the bilayer. While no structures of a voltage-sensor toxin bound to a channel have been solved, a structural homolog, psalmotoxin (PcTx1), was recently crystalized in complex with the extracellular domain of an acid sensing ion channel (ASIC). In the present study we use spectroscopic, biophysical and computational approaches to compare membrane interaction properties and channel binding surfaces of PcTx1 with the voltage-sensor toxin guangxitoxin (GxTx-1E). Our results show that both types of tarantula toxins interact with membranes, but that voltage-sensor toxins partition deeper into the bilayer. In addition, our results suggest that tarantula toxins have evolved a similar concave surface for clamping onto α-helices that is effective in aqueous or lipidic physical environments. DOI: http://dx.doi.org/10.7554/eLife.06774.001
The Journal of General Physiology | 2013
Mirela Milescu; Hwa C. Lee; Chan Hyung Bae; Jae Il Kim; Kenton J. Swartz
Voltage-activated ion channels open and close in response to changes in membrane voltage, a property that is fundamental to the roles of these channels in electrical signaling. Protein toxins from venomous organisms commonly target the S1–S4 voltage-sensing domains in these channels and modify their gating properties. Studies on the interaction of hanatoxin with the Kv2.1 channel show that this tarantula toxin interacts with the S1–S4 domain and inhibits opening by stabilizing a closed state. Here we investigated the interaction of hanatoxin with the Shaker Kv channel, a voltage-activated channel that has been extensively studied with biophysical approaches. In contrast to what is observed in the Kv2.1 channel, we find that hanatoxin shifts the conductance–voltage relation to negative voltages, making it easier to open the channel with membrane depolarization. Although these actions of the toxin are subtle in the wild-type channel, strengthening the toxin–channel interaction with mutations in the S3b helix of the S1-S4 domain enhances toxin affinity and causes large shifts in the conductance–voltage relationship. Using a range of previously characterized mutants of the Shaker Kv channel, we find that hanatoxin stabilizes an activated conformation of the voltage sensors, in addition to promoting opening through an effect on the final opening transition. Chimeras in which S3b–S4 paddle motifs are transferred between Kv2.1 and Shaker Kv channels, as well as experiments with the related tarantula toxin GxTx-1E, lead us to conclude that the actions of tarantula toxins are not simply a product of where they bind to the channel, but that fine structural details of the toxin–channel interface determine whether a toxin is an inhibitor or opener.
Biochemistry | 2010
Seungkyu Lee; Mirela Milescu; Hyun Ho Jung; Ju Yeon Lee; Chan Hyung Bae; Chul Won Lee; Ha Hyung Kim; Kenton J. Swartz; Jae Il Kim
GxTX-1E is a neurotoxin recently isolated from Plesiophrictus guangxiensis venom that inhibits the Kv2.1 channel in pancreatic beta-cells. The sequence of the toxin is related to those of previously studied tarantula toxins that interact with the voltage sensors in Kv channels, and GxTX-1E interacts with the Kv2.1 channel with unusually high affinity, making it particularly useful for structural and mechanistic studies. Here we determined the three-dimensional solution structure of GxTX-1E using NMR spectroscopy and compared it to that of several related tarantula toxins. The molecular structure of GxTX-1E is similar to those of tarantula toxins that target voltage sensors in Kv channels in that it contains an ICK motif, composed of beta-strands, and contains a prominent cluster of solvent-exposed hydrophobic residues surrounded by polar residues. When compared with the structure of SGTx1, a toxin for which mutagenesis data are available, the residue compositions of the two toxins are distinct in regions that are critical for activity, suggesting that their modes of binding to voltage sensors may be different. Interestingly, the structural architecture of GxTX-1E is also similar to that of JZTX-III, a tarantula toxin that interacts with Kv2.1 with low affinity. The most striking structural differences between GxTX-1E and JZTX-III are found in the orientation between the first and second cysteine loops and the C-terminal region of the toxins, suggesting that these regions of GxTX-1E are responsible for its high affinity.
Scientific Reports | 2016
Autoosa Salari; Benjamin S. Vega; Lorin S. Milescu; Mirela Milescu
Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning.