Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirella Meregalli is active.

Publication


Featured researches published by Mirella Meregalli.


Journal of Clinical Investigation | 2004

Human circulating AC133 + stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle

Yvan Torrente; Marzia Belicchi; Maurilio Sampaolesi; Federica Pisati; Mirella Meregalli; Giuseppe D’Antona; Rossana Tonlorenzi; Laura Porretti; Manuela Gavina; Kamel Mamchaoui; Denis Furling; Vincent Mouly; Gillian Butler-Browne; Roberto Bottinelli; Giulio Cossu; Nereo Bresolin

Duchenne muscular dystrophy (DMD) is a common X-linked disease characterized by widespread muscle damage that invariably leads to paralysis and death. There is currently no therapy for this disease. Here we report that a subpopulation of circulating cells expressing AC133, a well-characterized marker of hematopoietic stem cells, also expresses early myogenic markers. Freshly isolated, circulating AC133(+) cells were induced to undergo myogenesis when cocultured with myogenic cells or exposed to Wnt-producing cells in vitro and when delivered in vivo through the arterial circulation or directly into the muscles of transgenic scid/mdx mice (which allow survival of human cells). Injected cells also localized under the basal lamina of host muscle fibers and expressed satellite cell markers such as M-cadherin and MYF5. Furthermore, functional tests of injected muscles revealed a substantial recovery of force after treatment. As these cells can be isolated from the blood, manipulated in vitro, and delivered through the circulation, they represent a possible tool for future cell therapy applications in DMD disease or other muscular dystrophies.


Cell Stem Cell | 2007

Restoration of Human Dystrophin Following Transplantation of Exon-Skipping-Engineered DMD Patient Stem Cells into Dystrophic Mice

Rachid Benchaouir; Mirella Meregalli; Andrea Farini; Giuseppe D'Antona; Marzia Belicchi; Aurélie Goyenvalle; M. Battistelli; Nereo Bresolin; Roberto Bottinelli; Luis Garcia; Yvan Torrente

Duchenne muscular dystrophy (DMD) is a hereditary disease caused by mutations that disrupt the dystrophin mRNA reading frame. In some cases, forced exclusion (skipping) of a single exon can restore the reading frame, giving rise to a shorter, but still functional, protein. In this study, we constructed lentiviral vectors expressing antisense oligonucleotides in order to induce an efficient exon skipping and to correct the initial frameshift caused by the DMD deletion of CD133+ stem cells. The intramuscular and intra-arterial delivery of genetically corrected CD133 expressing myogenic progenitors isolated from the blood and muscle of DMD patients results in a significant recovery of muscle morphology, function, and dystrophin expression in scid/mdx mice. These data demonstrate that autologous engrafting of blood or muscle-derived CD133+ cells, previously genetically modified to reexpress a functional dystrophin, represents a promising approach for DMD.


Frontiers in Cellular Neuroscience | 2013

The involvement of microRNAs in neurodegenerative diseases.

Simona Maciotta; Mirella Meregalli; Yvan Torrente

Neurodegenerative diseases (NDDs) originate from a loss of neurons in the central nervous system and are severely debilitating. The incidence of NDDs increases with age, and they are expected to become more common due to extended life expectancy. Because no cure is available, these diseases have become a major challenge in neurobiology. The increasing relevance of microRNAs (miRNAs) in biology has prompted investigation into their possible involvement in neurodegeneration in order to identify new therapeutic targets. The idea of using miRNAs as therapeutic targets is not far from realization, but important issues need to be addressed before moving into the clinics. Here, we review what is known about the involvement of miRNAs in the pathogenesis of NDDs. We also report the miRNA expression levels in peripheral tissues of patients affected by NDDs in order to evaluate their application as biomarkers of disease. Finally, discrepancies, innovations, and the effectiveness of collected data will be elucidated and discussed.


Cell Transplantation | 2007

Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases.

Federica Pisati; Patrizia Bossolasco; Mirella Meregalli; Lidia Cova; Marzia Belicchi; Manuela Gavina; C. Marchesi; Cinzia Calzarossa; Davide Soligo; Giorgio Lambertenghi-Deliliers; Nereo Bresolin; Vincenzo Silani; Yvan Torrente; Elio Polli

In animal models of neurological disorders for cerebral ischemia, Parkinsons disease, and spinal cord lesions, transplantation of mesenchymal stem cells (MSCs) has been reported to improve functional outcome. Three mechanisms have been suggested for the effects of the MSCs: transdifferentiation of the grafted cells with replacement of degenerating neural cells, cell fusion, and neuroprotection of the dying cells. Here we demonstrate that a restricted number of cells with differentiated astroglial features can be obtained from human adult MSCs (hMSCs) both in vitro using different induction protocols and in vivo after transplantation into the developing mouse brain. We then examined the in vitro differentiation capacity of the hMSCs in coculture with slices of neonatal brain cortex. In this condition the hMSCs did not show any neuronal transdifferentiation but expressed neurotrophin low-affinity (NGFRp75) and high-affinity (trkC) receptors and released nerve growth factor (NGF) and neurotrophin-3 (NT-3). The same neurotrophins expression was demonstrated 45 days after the intracerebral transplantation of hMSCs into nude mice with surviving astroglial cells. These data further confirm the limited capability of adult hMSC to differentiate into neurons whereas they differentiated in astroglial cells. Moreover, the secretion of neurotrophic factors combined with activation of the specific receptors of transplanted hMSCs demonstrated an alternative mechanism for neuroprotection of degenerating neurons. hMSCs are further defined in their transplantation potential for treating neurological disorders.


Glia | 2007

Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection

C. Marchesi; Mauro Pluderi; Federica Colleoni; Marzia Belicchi; Mirella Meregalli; Andrea Farini; D. Parolini; L. Draghi; M. E. Fruguglietti; Manuela Gavina; Laura Porretti; Alessandra Cattaneo; M. Battistelli; Alessandro Prelle; Maurizio Moggio; S. Borsa; Luca Bello; Diego Spagnoli; S. M. Gaini; Maria Cristina Tanzi; Nereo Bresolin; Nadia Grimoldi; Yvan Torrente

The regeneration in the peripheral nervous system is often incomplete and the treatment of severe lesions with nerve tissue loss is primarily aimed at recreating nerve continuity. Guide tubes of various types, filled with Schwann cells, stem cells, or nerve growth factors are attractive as an alternative therapy to nerve grafts. In this study, we evaluated whether skin‐derived stem cells (SDSCs) can improve peripheral nerve regeneration after transplantation into nerve guides. We compared peripheral nerve regeneration in adult rats with sciatic nerve gaps of 16 mm after autologous transplantation of GFP‐labeled SDSCs into two different types of guides: a synthetic guide, obtained by dip coating with a L‐lactide and trimethylene carbonate (PLA‐TMC) copolymer and a collagen‐based guide. The sciatic function index and the recovery rates of the compound muscle action potential were significantly higher in the animals that received SDSCs transplantation, in particular, into the collagen guide, compared to the control guides filled only with PBS. For these guides the morphological and immunohistochemical analysis demonstrated an increased number of myelinated axons expressing S100 and Neurofilament 70, suggesting the presence of regenerating nerve fibers along the gap. GFP positive cells were found around regenerating nerve fibers and few of them were positive for the expression of glial markers as S‐100 and glial fibrillary acidic protein. RT‐PCR analysis confirmed the expression of S100 and myelin basic protein in the animals treated with the collagen guide filled with SDSCs. These data support the hypothesis that SDSCs could represent a tool for future cell therapy applications in peripheral nerve regeneration.


The Journal of Pathology | 2007

T and B lymphocyte depletion has a marked effect on the fibrosis of dystrophic skeletal muscles in the scid/mdx mouse

Andrea Farini; Mirella Meregalli; Marzia Belicchi; M. Battistelli; D. Parolini; Giuseppe D'Antona; Manuela Gavina; Linda Ottoboni; Gabriela Constantin; Roberto Bottinelli; Yvan Torrente

Abnormal connective tissue proliferation following muscle degeneration is a major pathological feature of Duchenne muscular dystrophy (DMD), a genetic myopathy due to lack of the sarcolemmal dystrophin protein. Since this fibrotic proliferation is likely to be a major obstacle to the efficacy of future therapies, research is needed to understand and prevent the fibrotic process in order to develop an effective treatment. Murine muscular dystrophy (mdx) is genetically homologous to DMD, and histopatological alterations are comparable to those of the muscles of patients with DMD. To investigate the development of fibrosis, we bred the mdx mouse with the scid immunodepressed mouse and analysed fibrosis histologically; we used ELISA analysis to determine TGF‐β1 expression. Significant reduction of fibrosis and TGF‐β1 expression was found in the muscles of the scid/mdx mice. However, we observed similar centrally located nuclei, necrosis, muscle degeneration and muscle force compared to the mdx animals. These data demonstrate a correlation between the absence of B and T lymphocytes and loss of fibrosis accompanied by reduction of TGF‐β1, suggesting the importance of modulation of the immune system in DMD. Copyright


Journal of Cellular Physiology | 2009

Cell based therapy for Duchenne muscular dystrophy.

Andrea Farini; Paola Razini; Silvia Erratico; Yvan Torrente; Mirella Meregalli

Mutations in the dystrophin gene cause an X‐linked genetic disorder: Duchenne muscular dystrophy (DMD). Stem cell therapy is an attractive method to treat DMD because a small number of cells are required to obtain a therapeutic effect. Here, we discussed about multiple types of myogenic stem cells and their possible use to treat DMD. The identification of a stem cell population providing efficient muscle regeneration is critical for the progression of cell therapy for DMD. We speculated that the most promising possibility for the treatment of DMD is a combination of different approaches, such as gene and stem cell therapy. J. Cell. Physiol. 221: 526–534, 2009.


Stem Cells International | 2014

Clinical Applications of Mesenchymal Stem Cells in Chronic Diseases

Andrea Farini; Clementina Sitzia; Silvia Erratico; Mirella Meregalli; Yvan Torrente

Extraordinary progress in understanding several key features of stem cells has been made in the last ten years, including definition of the niche, and identification of signals regulating mobilization and homing as well as partial understanding of the mechanisms controlling self-renewal, commitment, and differentiation. This progress produced invaluable tools for the development of rational cell therapy protocols that have yielded positive results in preclinical models of genetic and acquired diseases and, in several cases, have entered clinical experimentation with positive outcome. Adult mesenchymal stem cells (MSCs) are nonhematopoietic cells with multilineage potential to differentiate into various tissues of mesodermal origin. They can be isolated from bone marrow and other tissues and have the capacity to extensively proliferate in vitro. Moreover, MSCs have also been shown to produce anti-inflammatory molecules which can modulate humoral and cellular immune responses. Considering their regenerative potential and immunoregulatory effect, MSC therapy is a promising tool in the treatment of degenerative, inflammatory, and autoimmune diseases. It is obvious that much work remains to be done to increase our knowledge of the mechanisms regulating development, homeostasis, and tissue repair and thus to provide new tools to implement the efficacy of cell therapy trials.


Expert Opinion on Biological Therapy | 2010

CD133+ cells isolated from various sources and their role in future clinical perspectives

Mirella Meregalli; Andrea Farini; Marzia Belicchi; Yvan Torrente

Background. CD133 is a member of a novel family of cell surface glycoproteins. Initially, the expression of CD133 antigen was seen only in the hematopoietic derived CD34+ stem cells. At present, CD133 expression is demonstrated in undifferentiated epithelium, different types of tumors and myogenic cells. CD133+ neurosphere cells isolated from brain are able to differentiate into both neurons and glial cells. These data suggested that CD133 could be a specific marker for various stem and progenitor cell populations. Objectives. The main goal would be to describe the role for CD133 as a marker of stem cells able to engraft and differentiate, to form functional non-hematopoietic adult lineages and contribute to disease amelioration via tissue regeneration. Results/conclusion. In conclusion, since the rise of CD133 antigen as a suitable stem cell marker, the possible use of CD133+ stem cells in therapeutic applications has opened a new promising field in the treatment of degenerating diseases. The human circulating cells expressing the CD133 antigen behave as a stem cell population capable of commitment to hematopoietic, endothelial and myogenic lineages. CD133 cell therapy may represent a promising treatment for many diseases.


PLOS ONE | 2012

Hmgb3 Is Regulated by MicroRNA-206 during Muscle Regeneration

Simona Maciotta; Mirella Meregalli; Letizia Cassinelli; Daniele Parolini; Andrea Farini; Giulia Del Fraro; Francesco Gandolfi; Mattia Forcato; Sergio Ferrari; Davide Gabellini; Silvio Bicciato; Giulio Cossu; Yvan Torrente

Background MicroRNAs (miRNAs) have been recently involved in most of human diseases as targets for potential strategies to rescue the pathological phenotype. Since the skeletal muscle is a spread-wide highly differentiated and organized tissue, rescue of severely compromised muscle still remains distant from nowadays. For this reason, we aimed to identify a subset of miRNAs major involved in muscle remodelling and regeneration by analysing the miRNA-profile of single fibres isolated from dystrophic muscle, which was here considered as a model of chronic damage. Methodology/Principal Findings The miRNA-signature associated to regenerating (newly formed) and remodelling (resting) fibres was investigated in animal models of muscular dystrophies and acute damage, in order to distinguish which miRNAs are primary related to muscle regeneration. In this study we identify fourteen miRNAs associated to dystrophic fibres responsible for muscle regeneration and remodelling, and confirm over-expression of the previously identified regeneration-associated myomiR-206. In particular, a functional binding site for myomiR-206 was identified and validated in the 3′untranslated region (3′UTR) of an X-linked member of a family of sequence independent chromatin-binding proteins (Hmgb3) that is preferentially expressed in hematopoietic stem cells. During regeneration of single muscle fibres, Hmgb3 messenger RNA (mRNA) and protein expression was gradually reduced, concurrent with the up-regulation of miR-206. Conclusion/Significance Our results elucidate a negative feedback circuit in which myomiR-206 represses Hmgb3 expression to modulate the regeneration of single muscle fibres after acute and chronic muscle damage. These findings suggest that myomiR-206 may be a potential therapeutic target in muscle diseases.

Collaboration


Dive into the Mirella Meregalli's collaboration.

Top Co-Authors

Avatar

Yvan Torrente

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Andrea Farini

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Marzia Belicchi

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paola Razini

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Clementina Sitzia

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Silvia Erratico

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar

Daniele Parolini

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Letizia Cassinelli

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Researchain Logo
Decentralizing Knowledge