Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miren Ettcheto is active.

Publication


Featured researches published by Miren Ettcheto.


Neural Plasticity | 2016

Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment

Jaume Folch; Dmitry Petrov; Miren Ettcheto; Sonia Abad; Elena Sánchez-López; M. Luisa García; Jordi Olloquequi; Carlos Beas-Zarate; Carme Auladell; Antoni Camins

Alzheimers disease (AD) currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aβ) peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a) to reduce Aβ production through the inhibition of β and γ secretase enzymes and (b) to promote dissolution of existing cerebral Aβ plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aβ signalling, particularly at the synapse. Aβ oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR) activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC). PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aβ is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5). Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease.


Expert Review of Neurotherapeutics | 2015

Masitinib for the treatment of mild to moderate Alzheimer’s disease

Jaume Folch; Dmitry Petrov; Miren Ettcheto; Ignacio Pedrós; Sonia Abad; Carlos Beas-Zarate; Alberto Lazarowski; Miguel Marin; Jordi Olloquequi; Carme Auladell; Antoni Camins

Alzheimer’s disease (AD) is a degenerative neurological disorder that is the most common cause of dementia and disability in older patients. Available treatments are symptomatic in nature and are only sufficient to improve the quality of life of AD patients temporarily. A potential strategy, currently under investigation, is to target cell-signaling pathways associated with neurodegeneration, in order to decrease neuroinflammation, excitotoxicity, and to improve cognitive functions. Current review centers on the role of neuroinflammation and the specific contribution of mast cells to AD pathophysiology. The authors look at masitinib therapy and the evidence presented through preclinical and clinical trials. Dual actions of masitinib as an inhibitor of mast cell–glia axis and a Fyn kinase blocker are discussed in the context of AD pathology. Masitinib is in Phase III clinical trials for the treatment of malignant melanoma, mastocytosis, multiple myeloma, gastrointestinal cancer and pancreatic cancer. It is also in Phase II/III clinical trials for the treatment of multiple sclerosis, rheumatoid arthritis and AD. Additional research is warranted to better investigate the potential effects of masitinib in combination with other drugs employed in AD treatment.


Colloids and Surfaces B: Biointerfaces | 2016

PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen—in vitro, ex vivo and in vivo characterization

Elena Sánchez-López; M.A. Egea; Amanda Cano; Marta Espina; Ana C. Calpena; Miren Ettcheto; A. Camins; Eliana B. Souto; Amélia M. Silva; M.L. García

Dexibuprofen-loaded PEGylated PLGA nanospheres have been developed to improve the biopharmaceutical profile of the anti-inflammatory drug for ocular administration. Dexibuprofen is the active enantiomer of ibuprofen and therefore lower doses may be applied to achieve the same therapeutic level. According to this, two batches of nanospheres of different drug concentrations, 0.5 and 1.0mg/ml respectively, have been developed (the latter corresponding to the therapeutic ibuprofen concentration for inflammatory eye diseases). Both batches were composed of negatively charged nanospheres (--14.1 and --15.9mV), with a mean particle size below 200nm, and a high encapsulation efficiency (99%). X-ray, FTIR, and DSC analyses confirmed that the drug was dispersed inside the matrix of the nanospheres. While the in vitro release profile was sustained up to 12h, the ex vivo corneal and scleral permeation profile demonstrated higher drug retention and permeation in the corneal tissue rather than in the sclera. These results were also confirmed by the quantification of dexibuprofen in ocular tissues after the in vivo administration of drug-loaded nanospheres. Cell viability studies confirmed that PEGylated-PLGA nanospheres were less cytotoxic than free dexibuprofen in the majority of the tested concentrations. Ocular in vitro (HET-CAM test) and in vivo (Draize test) tolerance assays demonstrated the non-irritant character of both nanosphere batches. In vivo anti-inflammatory effects were evaluated in albino rabbits before and after inflammation induction. Both batches confirmed to be effective to treat and prevent ocular inflammation.


Life Sciences | 2015

The role of leptin in the sporadic form of Alzheimer's disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin.

Jaume Folch; Iván Patraca; Nohora Martínez; Ignacio Pedrós; Dmitry Petrov; Miren Ettcheto; Sonia Abad; Miguel Marin; Carlos Beas-Zarate; Antoni Camins

Leptin (Lep) is emerging as a pivotal molecule involved in both the early events and the terminal phases of Alzheimers disease (AD). In the canonical pathway, Lep acts as an anorexigenic factor via its effects on hypothalamic nucleus. However, additional functions of Lep in the hippocampus and cortex have been unravelled in recent years. Early events in the sporadic form of AD likely involve cellular level alterations which can have an effect on food intake and metabolism. Thus, AD can be conceivably interpreted as a multiorgan pathology that not only results in a dramatic neuronal loss in brain areas such as the hippocampus and the cortex (ultimately leading to a significant cognitive impairment) but as a disease which also affects body-weight homeostasis. According to this view, body-weight control disruptions are to be expected in both the early- and late-stage AD, concomitant with changes in serum Lep content, alterations in Lep transport across the blood-brain barrier (BBB) and Lep receptor-related signalling abnormalities. Lep is a member of the adipokine family of molecules, while the Lep receptor belongs to the class I cytokine receptors. Since cellular response to adipokine signalling can be either potentiated or diminished as a result of specific ligand-receptor interactions, Lep interactions with other members of the adipokine family including amylin, ghrelin and hormones such as prolactin require further investigation. In this review, we provide a general perspective on the functions of Lep in the brain, with a particular focus on the sporadic AD.


Nanomedicine: Nanotechnology, Biology and Medicine | 2017

New potential strategies for Alzheimer's disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9

Elena Sánchez-López; Miren Ettcheto; M.A. Egea; Marta Espina; Ana C. Calpena; Jaume Folch; Antoni Camins; María L. García

Dexibuprofen loaded pegylated poly(lactic-co-glycolic) nanospheres prepared by solvent diffusion method were designed to increase Dexibuprofen brain delivery reducing systemic side effects. Nanospheres exhibited a mean particle size around 200 nm (195.4 nm), monomodal population and negative surface charge. Drug loaded nanospheres showed a sustained release profile, allowing to modify the posology in vivo. Nanospheres were non-toxic neither in brain endothelial cells nor astrocytes and do not cause blood-brain barrier disruption. Nanospheres were able to partially cross the cells barrier and release the drug after co-culture in vitro experiments, increasing Dexibuprofen permeation coefficient. Behavioral tests performed in APPswe/PS1dE9 mice (mice model of familial Alzheimers disease) showed that nanospheres reduce memory impairment more efficiently than the free drug. Developed nanospheres decrease brain inflammation leading to β-amyloid plaques reduction. According to these results, chronical oral Dexibuprofen pegylated poly(lactic-co-glycolic) nanosystems could constitute a suitable strategy for the prevention of neurodegeneration.


Experimental Gerontology | 2015

Hypercholesterolemia and neurodegeneration. Comparison of hippocampal phenotypes in LDLr knockout and APPswe/PS1dE9 mice

Miren Ettcheto; Dmitry Petrov; Ignacio Pedrós; Luisa de Lemos; Mercè Pallàs; Marta Alegret; Juan C. Laguna; Jaume Folch; Antoni Camins

Previous studies suggest that Alzheimers disease (AD) neurobiology could not be explained solely by an increase in β-amyloid levels. Recently, it has been proposed that alterations in brain cholesterol metabolism may contribute to the pathogenesis of AD. In the present work, we focus on early changes in the hippocampal phenotypes of two mouse models in which cognitive impairments were previously described: a) the hypercholesterolemic LDL receptor knockout (LDLr -/-) and b) the APPswe/PS1dE9 (APP/PS1) transgenic model of familial AD. Our initial analysis, subsequent validation and additional experiments at the mRNA and protein levels demonstrate some parallels between the hippocampal phenotypes of these 2 mouse models, however our data suggest that the molecular mechanisms leading to cognitive decline are distinct in LDLr -/- and APP/PS1 animals. Genes related to cytokine signaling were significantly down-regulated in LDLr -/- mice when compared to both the wild-type and APP/PS1 mice, and these include prostaglandin-endoperoxide synthases 1 and 2 (ptgs1 and 2) and nerve grow factor (ngf). We have also detected reduced expression of genes related to lipid metabolism in LDLr -/- mice: peroxisome proliferator activated receptor gamma (pparg), pro-opiomelanocortin-alpha (pomc) and of protein kinase, AMP-activated, alpha 1 catalytic subunit of AMPK (prkaa1). Our array data also indicate that transcriptional activity of early genes involved in memory process, such as FBJ osteosarcoma oncogene (Fos) and the activity regulated cytoskeletal-associated protein (Arc) gene, are increased in the hippocampus of LDLr -/- mice. Several proteins like insulin degrading enzyme (IDE), PGC-1α, OXPHOS 1, NMDAR1 and cyclic AMP response element binding protein (CREB) are up-regulated in the LDLr -/- mice, while in the APP/PS1 mouse model only OXPHOS complexes 2, 3 and 5 are slightly downregulated. Further studies are necessary to understand the molecular pathways involved in memory loss in hypercholesterolemic LDLr -/- mice.


Mechanisms of Ageing and Development | 2017

Long-term exposition to a high fat diet favors the appearance of β-amyloid depositions in the brain of C57BL/6J mice. A potential model of sporadic Alzheimer's disease.

Oriol Busquets; Miren Ettcheto; Mercè Pallàs; Carlos Beas-Zarate; Ester Verdaguer; Carme Auladell; Jaume Folch; Antoni Camins

AIMS The sporadic and late-onset form of Alzheimers disease (AD) constitutes the most common form of dementia. This non-familiar form could be a consequence of metabolic syndrome, characterized by obesity and the development of a brain-specific insulin resistance known as type III diabetes. This work demonstrates the development of a significant AD-like neuropathology due to these metabolic alterations. METHODS C57BL/6J mice strain were divided into two groups, one fed with a diet rich in palmitic acid (high-fat diet, HFD) since their weaning until 16 months of age, and another group used as a control with a regular diet. The analyses were carried out in the dentate gyrus area of the hippocampus using a Thioflavin-S stain and immunofluorescence assays. RESULTS The most significant finding of the present research was that HFD induced the deposition of the βA peptide. Moreover, the diet also caused alterations in different cell processes, such as increased inflammatory reactions that lead to a decrease in the neuronal precursor cells. In addition, the results show that there were also dysregulations in normal autophagy and apoptosis, mechanisms related to βA formation. CONCLUSIONS The present findings confirm that HFD favors the formation of βA depositions in the brain, a key feature of AD, supporting the metabolic hypothesis of sporadic AD.


Neurologia | 2018

Una revisión de los avances en la terapéutica de la enfermedad de Alzheimer: estrategia frente a la proteína β-amiloide

Jaume Folch; Miren Ettcheto; Dmitry Petrov; Sonia Abad; I. Pedrós; M. Marin; J. Olloquequi; Antoni Camins

INTRODUCTION Alzheimer disease (AD) is a major neurodegenerative disorder which eventually results in total intellectual disability. The high global prevalence and the socioeconomic burden associated with the disease pose major challenges for public health in the 21st century. In this review we focus on both existing treatments and the therapies being developed, which principally target the β-amyloid protein. DISCUSSION The amyloidogenic hypothesis proposes that β-amyloid plays a key role in AD. Several pharmacological approaches aim to reduce the formation of β-amyloid peptides by inhibiting the β-secretase and γ-secretase enzymes. In addition, both passive and active immunotherapies have been developed for the purpose of inhibiting β-amyloid peptide aggregation. CONCLUSIONS Progress in identifying the molecular basis of AD may provide better models for understanding the causes of this neurodegenerative disease. The lack of efficacy of solanezumab (a humanised monoclonal antibody that promotes β-amyloid clearance in the brain), demonstrated by 2 recent Phase III clinical trials in patients with mild AD, suggests that the amyloidogenic hypothesis needs to be revised.


Journal of Alzheimer's Disease | 2017

Memantine for the Treatment of Dementia: A Review on its Current and Future Applications

Jaume Folch; Oriol Busquets; Miren Ettcheto; Elena Sánchez-López; Rubén Darío Castro-Torres; Ester Verdaguer; Maria L. Garcia; Jordi Olloquequi; Gemma Casadesus; Carlos Beas-Zarate; Carme Pelegrí; Jordi Vilaplana; Carme Auladell; Antoni Camins

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of extracellular amyloid-β protein (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau protein. The N-Methyl-D-aspartate receptors (NMDAR), ionotropic glutamate receptor, are essential for processes like learning and memory. An excessive activation of NMDARs has been associated with neuronal loss. The discovery of extrasynaptic NMDARs provided a rational and physiological explanation between physiological and excitotoxic actions of glutamate. Memantine (MEM), an antagonist of extrasynaptic NMDAR, is currently used for the treatment of AD jointly with acetylcholinesterase inhibitors. It has been demonstrated that MEM preferentially prevents the excessive continuous extrasynaptic NMDAR disease activation and therefore prevents neuronal cell death induced by excitotoxicity without disrupting physiological synaptic activity. The problem is that MEM has shown no clear positive effects in clinical applications while, in preclinical stages, had very promising results. The data in preclinical studies suggests that MEM has a positive impact on improving AD brain neuropathology, as well as in preventing Aβ production, aggregation, or downstream neurotoxic consequences, in part through the blockade of extrasynaptic NMDAR. Thus, the focus of this review is primarily to discuss the efficacy of MEM in preclinical models of AD, consider possible combinations of this drug with others, and then evaluate possible reasons for its lack of efficacy in clinical trials. Finally, applications in other pathologies are also considered.


Redox biology | 2017

Dexibuprofen prevents neurodegeneration and cognitive decline in APPswe/PS1dE9 through multiple signaling pathways

Miren Ettcheto; Elena Sánchez-López; Laura Pons; Oriol Busquets; Jordi Olloquequi; Carlos Beas-Zarate; Mercè Pallàs; Maria L. Garcia; Carme Auladell; Jaume Folch; Antoni Camins

The aim of the present study is to elucidate the neuronal pathways associated to NSAIDs causing a reduction of the risk and progression of Alzheimers disease. The research was developed administering the active enantiomer of ibuprofen, dexibuprofen (DXI), in order to reduce associated gastric toxicity. DXI was administered from three to six-month-old female APPswe/PS1dE9 mice as a model of familial Alzheimers disease. DXI treatment reduced the activation of glial cells and the cytokine release involved in the neurodegenerative process, especially TNFα. Moreover, DXI reduced soluble β-amyloid (Aβ1-42) plaque deposition by decreasing APP, BACE1 and facilitating Aβ degradation by enhancing insulin-degrading enzyme. DXI also decreased TAU hyperphosphorylation inhibiting c-Abl/CABLES/p-CDK5 activation signal pathway and prevented spatial learning and memory impairment in transgenic mice. Therefore, chronic DXI treatment could constitute a potential AD-modifying drug, both restoring cognitive functions and reversing multiple brain neuropathological hallmarks.

Collaboration


Dive into the Miren Ettcheto's collaboration.

Top Co-Authors

Avatar

Jaume Folch

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge