Miren Martínez-Santos
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miren Martínez-Santos.
Science of The Total Environment | 2015
Miren Martínez-Santos; Anne Probst; Jon García-García; Estilita Ruiz-Romera
The purpose of this study was to assess the influence of anthropogenic factors (infrastructure construction and industrial and wastewater inputs) and hydrological factors (high-magnitude flood events) on metal and organic contamination and on the source variability of sediments taken from the Deba River and its tributaries. The pollution status was evaluated using a sequential extraction procedure (BCR 701), enrichment factor, individual and global contamination factors and a number of statistical analysis methods. Zn, Cu and Cr were found to have significant input from anthropogenic sources, with moderately severe enrichment, together with an extremely high potential risk of contamination. The principal scavenger of Cu and Cr was organic matter, whereas Zn was uniformly distributed among all non-residual fractions. For Fe, the anthropogenic contribution was more obviously detected in bulk sediments (<2 mm) than in fine fractions (<63 μm). Finally, the recent construction of a rail tunnel traversing Wealden Facies evaporites, together with intense rainfalls, was the main reason for the change in the source variability of bottom sediments and metal distribution in headwaters. The occurrence of a high-magnitude flood event resulted in a washout of the river bed and led to a general decrease in fine-grained sediment and metal concentrations in labile fractions of channel-bottom sediments, and a consequent downstream transfer of the pollution.
Ecotoxicology and Environmental Safety | 2017
Jessica Unda-Calvo; Miren Martínez-Santos; Estilita Ruiz-Romera
In the present study, the physiologically based extraction test PBET (gastric and intestinal phases) and two chemical based extraction methods, the toxicity characteristic leaching procedure (TCLP) and the sequential extraction procedure BCR 701 (Community Bureau of Reference of the European Commission) have been used to estimate and evaluate the bioaccessibility of metals (Fe, Mn, Zn, Cu, Ni, Cr and Pb) in sediments from the Deba River urban catchment. The statistical analysis of data and comparison among physiological and chemical methods have highlighted the relevance of simulate the gastrointestinal tract environment since metal bioaccessibility seems to depend on water and sediment properties such as pH, redox potential and organic matter content, and, primordially, on the form in which metals are present in the sediment. Indeed, metals distributed among all fractions (Mn, Ni, Zn) were the most bioaccessible, followed by those predominantly bound to oxidizable fraction (Cu, Cr and Pb), especially near major urban areas. Finally, a toxicological risk assessment was also performed by determining the hazard quotient (HQ), which demonstrated that, although sediments from mid- and downstream sampling points presented the highest metal bioaccessibilities, were not enough to have adverse effects on human health, Cr being the most potentially toxic element.
Science of The Total Environment | 2018
Miren Martínez-Santos; A. Lanzen; Jessica Unda-Calvo; Iker Martín; Carlos Garbisu; Estilita Ruiz-Romera
Studying the dynamics of nitrogen and sulphur cycling bacteria in river surface sediments is essential to better understand their contribution to global biogeochemical cycles. Evaporitic rocks settled at the headwater of the Deba River catchment (northern Spain) lead to high values of sulphate concentration in its waters. Besides, the discharge of effluents from untreated and treated residual (urban and industrial) wastewaters increases the concentration of metals, nutrients and organic compounds in its mid- and low-water courses. The aim of this study was to assess the impact of anthropogenic contamination from untreated and treated residual and industrial wastewaters on the structure and function of bacterial communities present in surface sediments of the Deba River catchment. The application of a quantitative functional approach (qPCR) based on denitrification genes (nir: nirS+nirK; and nosZ), together with a 16S rRNA gene metabarcoding structural analysis, revealed (i) the high relevance of the sulphur cycle at headwater surface sediments (as reflected by the abundance of members of the Syntrophobacterales order, and the Sulfuricurvum and Thiobacillus genera) and (ii) the predominance of sulphide-driven autotrophic denitrification over heterotrophic denitrification. Incomplete heterotrophic denitrification appeared to be predominant in surface sediments strongly impacted by treated and untreated effluents, as reflected by the lower values of the nosZ/nir ratio, thus favouring N2O emissions. Understanding nitrogen and sulphur cycling pathways has profound implications for the management of river ecosystems, since this knowledge can help us determine whether a specific river is acting or not as a source of greenhouse gases (i.e., N2O).
Journal of Environmental Sciences-china | 2018
Jessica Unda-Calvo; Miren Martínez-Santos; Estilita Ruiz-Romera; Juan Luis Lechuga-Crespo
A better understanding of the effects of a number of environmental factors on denitrification is vital for analyzing its role as nitrogen sink and providing deeper knowledge about the ecological status of a nitrate-rich ecosystem. Since few studies have addressed the occurrence and implications of denitrification in river sediments, and complexity of interactions among all these environmental factors makes comprehension of the process difficult, the potential of sediments from the Deba River to attenuate nitrate excess through denitrification was investigated. For this purpose, we adapted an in vitro method to measure activities of two enzymes contributing to the entire multiple-step nitrate reduction: Nitrate Reductase and Nitrite Reductase. The environmental features that influence both or single enzymatic activities were identified as oxygen availability, regulated directly by the moisture content or indirectly through the aerobic respiration, organic matter and nitrate content of sediments, and electrical conductivity and exchangeable sodium percentage of water. Additionally, our results showed that Nitrate Reductase catalyzes the principal limiting step of denitrification in sediments. Therefore, taking this enzymatic activity as an indicator, the southern part of the Deba River catchment presented low potential to denitrify but nitrate-limited sediments, whereas the middle and northern parts were characterized by high denitrification potential but nitrate-rich sediments. In general, this study on denitrifying enzymatic activities in sediments evaluates the suitability of the management of the effluents from wastewater treatment plants and municipal sewages to ensure a good ecological status of the Deba River.
Science of The Total Environment | 2019
Jessica Unda-Calvo; Estilita Ruiz-Romera; Silvia Fdez-Ortiz de Vallejuelo; Miren Martínez-Santos; Ainara Gredilla
In this study, non-destructive techniques (X-ray Diffraction, Infrared and Scanning Electron Microscopy with Energy Dispersive spectroscopies) and invasive procedures (pseudo-total and sequential metal extraction methodologies) were used to highlight the significance of evaluating different particle sizes of sediments for assessing the potential environmental and health implications of metal geochemistry in an urban ecosystem. The variability in composition and properties between bulk (<2 mm) and fine (<63 μm) fractions influenced the availability, and by extension, the toxicity of metals. Indeed, the fine fraction presented not only higher metal pseudo-contents, but also greater available metal percentages. Besides the larger surface area per unit of mass and the high content of clay minerals, it was observed that it was principally Fe/Mn oxyhydroxides that favour adsorption of metals on the fine surface sediments. However, although we demonstrated that the origin of metals in the bulk surface sediments was predominantly lithogenic, use of the <2 mm fraction proved to be a useful tool for identifying different sources of available metals throughout the Deba River catchment. Specifically, discharges of untreated industrial and urban wastewaters, and even effluents from wastewater treatment plants were considered to greatly increase the health risk associated with metal availability. Finally, an evaluation of sediment dynamics in different hydrological conditions has highlighted the role played by each particle size as a vector of metal transport towards the coastal area. While resuspension of fine surface sediments notably induced significantly higher particulate metal concentrations in water during the dry season, resuspension of bulk surface sediments and, fundamentally, downstream transport of suspended particulate matter became more relevant and lowered the ecological risk during the wet season. Greater attention therefore needs to be paid to the new hydrological scenarios forecast to result from climate change, in which longer seasons with low river discharges are forecast.
Data in Brief | 2018
Miren Martínez-Santos; A. Lanzen; Jessica Unda-Calvo; Iker Martín; Carlos Garbisu; Estilita Ruiz-Romera
In many urban catchments, the discharge of effluents from wastewater treatment plants (WWTPs), as well as untreated wastewaters (UWWs), presents a major challenge for the maintenance of river sediment and water quality. The discharge of these effluents cannot only increase the concentration of metals, nutrients and organic compounds in fluvial ecosystems, but also alter the abundance, structure and function of river bacterial communities. Here, we present data on chemical and biological quality parameters in wastewater-impacted and non-impacted river surface sediment and water samples. Overall, the concentration of nutrients (inorganic nitrogen) and some heavy metals (Zn, Ni and Cr) was positively correlated with the nirS/16S rRNA ratio, while nirK- and nosZ-denitrifier populations were negatively affected by the presence of ammonium in sediments. Bacterial community structure was significantly correlated with the (i) combined influence of nutrient and metal concentrations, (ii) the contamination level (non-impacted vs. impacted sites), (iii) type of contamination (WWTP or UWW), and (iv) location of the sampling sites. Moreover, the higher abundance of five genera of the family Rhodocyclaceae detected in wastewater-impacted sites is also likely to be an effect of effluent discharge. The data presented here complement a broader study (Martínez-Santos et al., 2018) [1] and they are particularly useful for those interested in understanding the impact of wastewater effluents on the abundance, structure and function of river bacterial communities involved in nitrogen cycling.
Hydrology and Earth System Sciences | 2003
Cristina Garcı́a-Linares; Miren Martínez-Santos; V. Martínez-Bilbao; José-Miguel Sánchez-Pérez; Iñaki Antigüedad
Applied Clay Science | 2015
Margaret Suárez Muñoz; Clara M. Melián Rodríguez; Alina Gelen Rudnikas; Oscar Díaz Rizo; Miren Martínez-Santos; Estilita Ruiz-Romera; Juan R. Fagundo Castillo; Aurora Pérez-Gramatges; Nadia V. Martínez-Villegas; Dagoberto Blanco Padilla; Rebeca Hernández Díaz; Patricia González-Hernández
Applied Geochemistry | 2012
Miren Martínez-Santos; Estilita Ruiz-Romera; M. Martínez-López; Iñaki Antigüedad
Freshwater Biology | 2017
Maite Arroita; Lorea Flores; Aitor Larrañaga; Aingeru Martínez; Miren Martínez-Santos; Olatz Pereda; Estilita Ruiz-Romera; Libe Solagaistua; Arturo Elosegi