Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miriam A. Balderas is active.

Publication


Featured researches published by Miriam A. Balderas.


Genome Biology and Evolution | 2014

From Prediction to Function Using Evolutionary Genomics: Human-Specific Ecotypes of Lactobacillus reuteri Have Diverse Probiotic Functions

Jennifer K. Spinler; Amrita Sontakke; Emily B. Hollister; Susan Venable; Phaik Lyn Oh; Miriam A. Balderas; Delphine M. Saulnier; Toni Ann Mistretta; Sridevi Devaraj; Jens Walter; James Versalovic; Sarah K. Highlander

The vertebrate gut symbiont Lactobacillus reuteri has diversified into separate clades reflecting host origin. Strains show evidence of host adaptation, but how host–microbe coevolution influences microbial-derived effects on hosts is poorly understood. Emphasizing human-derived strains of L. reuteri, we combined comparative genomic analyses with functional assays to examine variations in host interaction among genetically distinct ecotypes. Within clade II or VI, the genomes of human-derived L. reuteri strains are highly conserved in gene content and at the nucleotide level. Nevertheless, they share only 70–90% of total gene content, indicating differences in functional capacity. Human-associated lineages are distinguished by genes related to bacteriophages, vitamin biosynthesis, antimicrobial production, and immunomodulation. Differential production of reuterin, histamine, and folate by 23 clade II and VI strains was demonstrated. These strains also differed with respect to their ability to modulate human cytokine production (tumor necrosis factor, monocyte chemoattractant protein-1, interleukin [IL]-1β, IL-5, IL-7, IL-12, and IL-13) by myeloid cells. Microarray analysis of representative clade II and clade VI strains revealed global regulation of genes within the reuterin, vitamin B12, folate, and arginine catabolism gene clusters by the AraC family transcriptional regulator, PocR. Thus, human-derived L. reuteri clade II and VI strains are genetically distinct and their differences affect their functional repertoires and probiotic features. These findings highlight the biological impact of microbe:host coevolution and illustrate the functional significance of subspecies differences in the human microbiome. Consideration of host origin and functional differences at the subspecies level may have major impacts on probiotic strain selection and considerations of microbial ecology in mammalian species.


PLOS Pathogens | 2012

Differential Function of Lip Residues in the Mechanism and Biology of an Anthrax Hemophore

MarCia T. Ekworomadu; Catherine B. Poor; Cedric P. Owens; Miriam A. Balderas; Marian Fabian; John S. Olson; Frank Murphy; Erol Balkabasi; Erin S. Honsa; Chuan He; Celia W. Goulding; Anthony W. Maresso

To replicate in mammalian hosts, bacterial pathogens must acquire iron. The majority of iron is coordinated to the protoporphyrin ring of heme, which is further bound to hemoglobin. Pathogenic bacteria utilize secreted hemophores to acquire heme from heme sources such as hemoglobin. Bacillus anthracis, the causative agent of anthrax disease, secretes two hemophores, IsdX1 and IsdX2, to acquire heme from host hemoglobin and enhance bacterial replication in iron-starved environments. Both proteins contain NEAr-iron Transporter (NEAT) domains, a conserved protein module that functions in heme acquisition in Gram-positive pathogens. Here, we report the structure of IsdX1, the first of a Gram-positive hemophore, with and without bound heme. Overall, IsdX1 forms an immunoglobin-like fold that contains, similar to other NEAT proteins, a 310-helix near the heme-binding site. Because the mechanistic function of this helix in NEAT proteins is not yet defined, we focused on the contribution of this region to hemophore and NEAT protein activity, both biochemically and biologically in cultured cells. Site-directed mutagenesis of amino acids in and adjacent to the helix identified residues important for heme and hemoglobin association, with some mutations affecting both properties and other mutations affecting only heme stabilization. IsdX1 with mutations that reduced the ability to associate with hemoglobin and bind heme failed to restore the growth of a hemophore-deficient strain of B. anthracis on hemoglobin as the sole iron source. These data indicate that not only is the 310-helix important for NEAT protein biology, but also that the processes of hemoglobin and heme binding can be both separate as well as coupled, the latter function being necessary for maximal heme-scavenging activity. These studies enhance our understanding of NEAT domain and hemophore function and set the stage for structure-based inhibitor design to block NEAT domain interaction with upstream ligands.


Journal of Bacteriology | 2012

Hal Is a Bacillus anthracis Heme Acquisition Protein

Miriam A. Balderas; Christopher L. Nobles; Erin S. Honsa; Embriette R. Alicki; Anthony W. Maresso

The metal iron is a limiting nutrient for bacteria during infection. Bacillus anthracis, the causative agent of anthrax and a potential weapon of bioterrorism, grows rapidly in mammalian hosts, which suggests that it efficiently attains iron during infection. Recent studies have uncovered both heme (isd) and siderophore-mediated (asb) iron transport pathways in this pathogen. Whereas deletion of the asb genes results in reduced virulence, the loss of three surface components from isd had no effect, thereby leaving open the question of what additional factors in B. anthracis are responsible for iron uptake from the most abundant iron source for mammals, heme. Here, we describe the first functional characterization of bas0520, a gene recently implicated in anthrax disease progression. bas0520 encodes a single near-iron transporter (NEAT) domain and several leucine-rich repeats. The NEAT domain binds heme, despite lacking a stabilizing tyrosine common to the NEAT superfamily of hemoproteins. The NEAT domain also binds hemoglobin and can acquire heme from hemoglobin in solution. Finally, deletion of bas0520 resulted in bacilli unable to grow efficiently on heme or hemoglobin as an iron source and yielded the most significant phenotype relative to that for other putative heme uptake systems, a result that suggests that this protein plays a prominent role in the replication of B. anthracis in hematogenous environments. Thus, we have assigned the name of Hal (heme-acquisition leucine-rich repeat protein) to BAS0520. These studies advance our understanding of heme acquisition by this dangerous pathogen and justify efforts to determine the mechanistic function of this novel protein for vaccine or inhibitor development.


Cellular and molecular gastroenterology and hepatology | 2017

Distinct Microbiome-Neuroimmune Signatures Correlate With Functional Abdominal Pain in Children With Autism Spectrum Disorder

Ruth Ann Luna; Numan Oezguen; Miriam A. Balderas; Alamelu Venkatachalam; Jessica K. Runge; James Versalovic; Jeremy Veenstra-VanderWeele; George M. Anderson; Tor C. Savidge; Kent C. Williams

Background & Aims Emerging data on the gut microbiome in autism spectrum disorder (ASD) suggest that altered host–microbe interactions may contribute to disease symptoms. Although gut microbial communities in children with ASD are reported to differ from individuals with neurotypical development, it is not known whether these bacteria induce pathogenic neuroimmune signals. Methods Because commensal clostridia interactions with the intestinal mucosa can regulate disease-associated cytokine and serotonergic pathways in animal models, we evaluated whether microbiome-neuroimmune profiles (from rectal biopsy specimens and blood) differed in ASD children with functional gastrointestinal disorders (ASD-FGID, n = 14) compared with neurotypical (NT) children with FGID (NT-FGID, n = 15) and without abdominal pain (NT, n = 6). Microbial 16S ribosomal DNA community signatures, cytokines, and serotonergic metabolites were quantified and correlated with gastrointestinal symptoms. Results A significant increase in several mucosa-associated Clostridiales was observed in ASD-FGID, whereas marked decreases in Dorea and Blautia, as well as Sutterella, were evident. Stratification by abdominal pain showed multiple organisms in ASD-FGID that correlated significantly with cytokines (interleukin [IL]6, IL1, IL17A, and interferon-γ). Group comparisons showed that IL6 and tryptophan release by mucosal biopsy specimens was highest in ASD children with abdominal pain, whereas serotonergic metabolites generally were increased in children with FGIDs. Furthermore, proinflammatory cytokines correlated significantly with several Clostridiales previously reported to associate with ASD, as did tryptophan and serotonin. Conclusions Our findings identify distinctive mucosal microbial signatures in ASD children with FGID that correlate with cytokine and tryptophan homeostasis. Future studies are needed to establish whether these disease-associated Clostridiales species confer early pathogenic signals in children with ASD and FGID.


MicrobiologyOpen | 2016

FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri.

Carissa M. Thomas; Delphine M. Saulnier; Jennifer K. Spinler; Peera Hemarajata; Chunxu Gao; Sara E. Jones; Ashley Grimm; Miriam A. Balderas; Matthew D. Burstein; Christina Morra; Daniel Roeth; Markus Kalkum; James Versalovic

Bacterial‐derived compounds from the intestinal microbiome modulate host mucosal immunity. Identification and mechanistic studies of these compounds provide insights into host–microbial mutualism. Specific Lactobacillus reuteri strains suppress production of the proinflammatory cytokine, tumor necrosis factor (TNF), and are protective in a mouse model of colitis. Human‐derived L. reuteri strain ATCC PTA 6475 suppresses intestinal inflammation and produces 5,10‐methenyltetrahydrofolic acid polyglutamates. Insertional mutagenesis identified the bifunctional dihydrofolate synthase/folylpolyglutamate synthase type 2 (folC2) gene as essential for 5,10‐methenyltetrahydrofolic acid polyglutamate biosynthesis, as well as for suppression of TNF production by activated human monocytes, and for the anti‐inflammatory effect of L. reuteri 6475 in a trinitrobenzene sulfonic acid‐induced mouse model of acute colitis. In contrast, folC encodes the enzyme responsible for folate polyglutamylation but does not impact TNF suppression by L. reuteri. Comparative transcriptomics between wild‐type and mutant L. reuteri strains revealed additional genes involved in immunomodulation, including previously identified hdc genes involved in histidine to histamine conversion. The folC2 mutant yielded diminished hdc gene cluster expression and diminished histamine production, suggesting a link between folate and histadine/histamine metabolism. The identification of genes and gene networks regulating production of bacterial‐derived immunoregulatory molecules may lead to improved anti‐inflammatory strategies for digestive diseases.


Pediatric Allergy and Immunology | 2018

Fecal microbiome signatures are different in food-allergic children compared to siblings and healthy children

Atoosa Kourosh; Ruth Ann Luna; Miriam A. Balderas; Christina Nance; Aikaterini Anagnostou; Sridevi Devaraj; Carla M. Davis

Intestinal microbes have been shown to influence predisposition to atopic disease, including food allergy. The intestinal microbiome of food‐allergic children may differ in significant ways from genetically similar non‐allergic children and age‐matched controls. The aim was to characterize fecal microbiomes to identify taxa that may influence the expression of food allergy.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2014

Identification of a proton-chloride antiporter (EriC) by Himar1 transposon mutagenesis in Lactobacillus reuteri and its role in histamine production

Peera Hemarajata; Jennifer K. Spinler; Miriam A. Balderas; James Versalovic

The gut microbiome may modulate intestinal immunity by luminal conversion of dietary amino acids to biologically active signals. The model probiotic organism Lactobacillus reuteri ATCC PTA 6475 is indigenous to the human microbiome, and converts the amino acid l-histidine to the biogenic amine, histamine. Histamine suppresses tumor necrosis factor (TNF) production by human myeloid cells and is a product of l-histidine decarboxylation, which is a proton-facilitated reaction. A transposon mutagenesis strategy was developed based on a single-plasmid nisin-inducible Himar1 transposase/transposon delivery system for L. reuteri. A highly conserved proton-chloride antiporter gene (eriC), a gene widely present in the gut microbiome was discovered by Himar1 transposon (Tn)-mutagenesis presented in this study. Genetic inactivation of eriC by transposon insertion and genetic recombineering resulted in reduced ability of L. reuteri to inhibit TNF production by activated human myeloid cells, diminished histamine production by the bacteria and downregulated expression of histidine decarboxylase cluster genes compared to those of WT 6475. EriC belongs to a large family of ion transporters that includes chloride channels and proton-chloride antiporters and may facilitate the availability of protons for the decarboxylation reaction, resulting in histamine production by L. reuteri. This report leverages the tools of bacterial genetics for probiotic gene discovery. The findings highlight the widely conserved nature of ion transporters in bacteria and how ion transporters are coupled with amino acid decarboxylation and contribute to microbiome-mediated immunomodulation.


Infection and Immunity | 2016

Progress toward the Development of a NEAT Protein Vaccine for Anthrax Disease

Miriam A. Balderas; Chinh Nguyen; Austen Terwilliger; Wendy A. Keitel; Angelina Iniguez; Rodrigo Torres; Frederico Palacios; Celia W. Goulding; Anthony W. Maresso

ABSTRACT Bacillus anthracis is a sporulating Gram-positive bacterium that is the causative agent of anthrax and a potential weapon of bioterrorism. The U.S.-licensed anthrax vaccine is made from an incompletely characterized culture supernatant of a nonencapsulated, toxigenic strain (anthrax vaccine absorbed [AVA]) whose primary protective component is thought to be protective antigen (PA). AVA is effective in protecting animals and elicits toxin-neutralizing antibodies in humans, but enthusiasm is dampened by its undefined composition, multishot regimen, recommended boosters, and potential for adverse reactions. Improving next-generation anthrax vaccines is important to safeguard citizens and the military. Here, we report that vaccination with recombinant forms of a conserved domain (near-iron transporter [NEAT]), common in Gram-positive pathogens, elicits protection in a murine model of B. anthracis infection. Protection was observed with both Freunds and alum adjuvants, given subcutaneously and intramuscularly, respectively, with a mixed composite of NEATs. Protection correlated with an antibody response against the NEAT domains and a decrease in the numbers of bacteria in major organs. Anti-NEAT antibodies promote opsonophagocytosis of bacilli by alveolar macrophages. To guide the development of inactive and safe NEAT antigens, we also report the crystal structure of one of the NEAT domains (Hal) and identify critical residues mediating its heme-binding and acquisition activity. These results indicate that we should consider NEAT proteins in the development of an improved antianthrax vaccine.


Protein Engineering Design & Selection | 2011

Use of periplasmic target protein capture for phage display engineering of tight-binding protein–protein interactions

Bartlomiej G. Fryszczyn; Nicholas G. Brown; Wanzhi Huang; Miriam A. Balderas; Timothy Palzkill

Phage display is a powerful tool to study and engineer protein and peptide interactions. It is not without its limitations, however, such as the requirement for target protein purification and immobilization in a correctly folded state. A protein capture method is described here that allows enrichment of tight-binding protein variants in vivo thereby eliminating the need for target protein purification and immobilization. The linkage of genotype to phenotype is achieved by placing both receptor and ligand encoding genes on the same plasmid. This allows the isolation of the tight-binding ligand-receptor pair complexes after their association in the bacterial periplasm. The interaction between the TEM-1-β-lactamase fused to the gene 3 coat protein displayed on the surface of M13 bacteriophage and the β-lactamse inhibitory protein (BLIP) expressed in soluble form with a signal sequence to export it to the periplasm was used as a model system to test the method. The system was experimentally validated using a previously characterized collection of BLIP alanine mutants with a range of binding affinities for TEM-1 β-lactamase and by isolating tight-binding variants from a library of mutants randomized at residue position Tyr50 in BLIP which contacts β-lactamase.


PLOS ONE | 2018

Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice

Berkley Luk; Surabi Veeraragavan; Melinda A. Engevik; Miriam A. Balderas; Angela Major; Jessica K. Runge; Ruth Ann Luna; James Versalovic

Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four “infant-type” Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6–7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate that the early-life gut microbiome, and human “infant-type” Bifidobacterium species, affect adult behavior in a strongly sex-dependent manner, and can selectively recapitulate the results observed when mice are colonized with a complex microbiota.

Collaboration


Dive into the Miriam A. Balderas's collaboration.

Top Co-Authors

Avatar

James Versalovic

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ruth Ann Luna

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony W. Maresso

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Sridevi Devaraj

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin S. Honsa

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jessica K. Runge

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Numan Oezguen

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge