Miriam A. Novack
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miriam A. Novack.
Psychological Science | 2014
Miriam A. Novack; Eliza L. Congdon; Naureen Hemani-Lopez; Susan Goldin-Meadow
Previous research has shown that children benefit from gesturing during math instruction. We asked whether gesturing promotes learning because it is itself a physical action, or because it uses physical action to represent abstract ideas. To address this question, we taught third-grade children a strategy for solving mathematical-equivalence problems that was instantiated in one of three ways: (a) in a physical action children performed on objects, (b) in a concrete gesture miming that action, or (c) in an abstract gesture. All three types of hand movements helped children learn how to solve the problems on which they were trained. However, only gesture led to success on problems that required generalizing the knowledge gained. The results provide the first evidence that gesture promotes transfer of knowledge better than direct action on objects and suggest that the beneficial effects gesture has on learning may reside in the features that differentiate it from action.
Psychonomic Bulletin & Review | 2017
Miriam A. Novack; Susan Goldin-Meadow
A great deal of attention has recently been paid to gesture and its effects on thinking and learning. It is well established that the hand movements that accompany speech are an integral part of communication, ubiquitous across cultures, and a unique feature of human behavior. In an attempt to understand this intriguing phenomenon, researchers have focused on pinpointing the mechanisms that underlie gesture production. One proposal––that gesture arises from simulated action (Hostetter & Alibali Psychonomic Bulletin & Review, 15, 495–514, 2008)––has opened up discussions about action, gesture, and the relation between the two. However, there is another side to understanding a phenomenon and that is to understand its function. A phenomenon’s function is its purpose rather than its precipitating cause––the why rather than the how. This paper sets forth a theoretical framework for exploring why gesture serves the functions that it does, and reviews where the current literature fits, and fails to fit, this proposal. Our framework proposes that whether or not gesture is simulated action in terms of its mechanism––it is clearly not reducible to action in terms of its function. Most notably, because gestures are abstracted representations and are not actions tied to particular events and objects, they can play a powerful role in thinking and learning beyond the particular, specifically, in supporting generalization and transfer of knowledge.
Learning and Instruction | 2017
Eliza L. Congdon; Miriam A. Novack; Neon Brooks; Naureen Hemani-Lopez; Lucy O'Keefe; Susan Goldin-Meadow
When teachers gesture during instruction, children retain and generalize what they are taught (Goldin-Meadow, 2014). But why does gesture have such a powerful effect on learning? Previous research shows that children learn most from a math lesson when teachers present one problem-solving strategy in speech while simultaneously presenting a different, but complementary, strategy in gesture (Singer & Goldin-Meadow, 2005). One possibility is that gesture is powerful in this context because it presents information simultaneously with speech. Alternatively, gesture may be effective simply because it involves the body, in which case the timing of information presented in speech and gesture may be less important for learning. Here we find evidence for the importance of simultaneity: 3rd grade children retain and generalize what they learn from a math lesson better when given instruction containing simultaneous speech and gesture than when given instruction containing sequential speech and gesture. Interpreting these results in the context of theories of multimodal learning, we find that gesture capitalizes on its synchrony with speech to promote learning that lasts and can be generalized.
Organizational Research Methods | 2018
Eliza L. Congdon; Miriam A. Novack; Susan Goldin-Meadow
Video recording technology allows for the discovery of psychological phenomena that might otherwise go unnoticed. We focus here on gesture as an example of such a phenomenon. Gestures are movements of the hands or body that people spontaneously produce while speaking or thinking through a difficult problem. Despite their ubiquity, speakers are not always aware that they are gesturing, and listeners are not always aware that they are observing gesture. We review how video technology has facilitated major insights within the field of gesture research by allowing researchers to capture, quantify, and better understand these transient movements. We propose that gesture, which can be easily missed if it is not a researcher’s focus, has the potential to affect thinking and learning in the people who produce it, as well as in the people who observe it, and that it can alter the communicative context of an experiment or social interaction. Finally, we discuss the challenges of using video technology to capture gesture in psychological studies, and we discuss opportunities and suggestions for making use of this rich source of information both within the field of developmental psychology and within the field of organizational psychology.
Developmental Science | 2018
Elizabeth M. Wakefield; Miriam A. Novack; Eliza L. Congdon; Steven Franconeri; Susan Goldin-Meadow
Teaching a new concept through gestures-hand movements that accompany speech-facilitates learning above-and-beyond instruction through speech alone (e.g., Singer & Goldin-Meadow, ). However, the mechanisms underlying this phenomenon are still under investigation. Here, we use eye tracking to explore one often proposed mechanism-gestures ability to direct visual attention. Behaviorally, we replicate previous findings: Children perform significantly better on a posttest after learning through Speech+Gesture instruction than through Speech Alone instruction. Using eye tracking measures, we show that children who watch a math lesson with gesture do allocate their visual attention differently from children who watch a math lesson without gesture-they look more to the problem being explained, less to the instructor, and are more likely to synchronize their visual attention with information presented in the instructors speech (i.e., follow along with speech) than children who watch the no-gesture lesson. The striking finding is that, even though these looking patterns positively predict learning outcomes, the patterns do not mediate the effects of training condition (Speech Alone vs. Speech+Gesture) on posttest success. We find instead a complex relation between gesture and visual attention in which gesture moderates the impact of visual looking patterns on learning-following along with speech predicts learning for children in the Speech+Gesture condition, but not for children in the Speech Alone condition. Gestures beneficial effects on learning thus come not merely from its ability to guide visual attention, but also from its ability to synchronize with speech and affect what learners glean from that speech.
Developmental Psychology | 2018
Miriam A. Novack; Courtney Filippi; Susan Goldin-Meadow; Amanda L. Woodward
Interpreting iconic gestures can be challenging for children. Here, we explore the features and functions of iconic gestures that make them more challenging for young children to interpret than instrumental actions. In Study 1, we show that 2.5-year-olds are able to glean size information from handshape in a simple gesture, although their performance is significantly worse than 4-year-olds’. Studies 2 to 4 explore the boundary conditions of 2.5-year-olds’ gesture understanding. In Study 2, 2.5-year-old children have an easier time interpreting size information in hands that reach than in hands that gesture. In Study 3, we tease apart the perceptual features and functional objectives of reaches and gestures. We created a context in which an action has the perceptual features of a reach (extending the hand toward an object) but serves the function of a gesture (the object is behind a barrier and not obtainable; the hand thus functions to represent, rather than reach for, the object). In this context, children struggle to interpret size information in the hand, suggesting that gesture’s representational function (rather than its perceptual features) is what makes it hard for young children to interpret. A distance control (Study 4) in which a person holds a box in gesture space (close to the body) demonstrates that children’s difficulty interpreting static gesture cannot be attributed to the physical distance between a gesture and its referent. Together, these studies provide evidence that children’s struggle to interpret iconic gesture may stem from its status as representational action.
Educational Psychology Review | 2015
Miriam A. Novack; Susan Goldin-Meadow
Cognition | 2015
Miriam A. Novack; Susan Goldin-Meadow; Amanda L. Woodward
Cognition | 2016
Miriam A. Novack; Elizabeth M. Wakefield; Susan Goldin-Meadow
Journal of Cognition and Development | 2014
Miriam A. Novack; Annette M. E. Henderson; Amanda L. Woodward