Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miriam A. Rosenbaum is active.

Publication


Featured researches published by Miriam A. Rosenbaum.


Applied Microbiology and Biotechnology | 2014

Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives

Miriam A. Rosenbaum; Ashley E. Franks

Over the past decade, microbial electrochemical technologies, originally developed from an interesting physiological phenomenon, have evolved from a rush of initiatives for sustainable bioelectricity generation to a multitude of specialized applications in very different areas. Genetic engineering of microbial biocatalysts for target bioelectrochemical applications like biosensing or bioremediation, as well as the discovery of entirely new bioelectrochemical processes such as microbial electrosynthesis of commodity chemicals, open up completely new possibilities. Where stands this technology today? And what are the general and specific challenges it faces not only scientifically but also for transition into commercial applications? This review intends to summarize the recent advances and provides a perspective on future developments.


Current Opinion in Biotechnology | 2014

Engineering microbial electrocatalysis for chemical and fuel production.

Miriam A. Rosenbaum; Alexander W. Henrich

In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis.


Frontiers in Microbiology | 2015

Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440

Simone Schmitz; Salome Nies; Nick Wierckx; Lars M. Blank; Miriam A. Rosenbaum

Pseudomonas putida strains are being developed as microbial production hosts for production of a range of amphiphilic and hydrophobic biochemicals. P. putidas obligate aerobic growth thereby can be an economical and technical challenge because it requires constant rigorous aeration and often causes reactor foaming. Here, we engineered a strain of P. putida KT2440 that can produce phenazine redox-mediators from Pseudomonas aeruginosa to allow partial redox balancing with an electrode under oxygen-limited conditions. P. aeruginosa is known to employ its phenazine-type redox mediators for electron exchange with an anode in bioelectrochemical systems (BES). We transferred the seven core phenazine biosynthesis genes phzA-G and the two specific genes phzM and phzS required for pyocyanin synthesis from P. aeruginosa on two inducible plasmids into P. putida KT2440. The best clone, P. putida pPhz, produced 45 mg/L pyocyanin over 25 h of growth, which was visible as blue color formation and is comparable to the pyocyanin production of P. aeruginosa. This new strain was then characterized under different oxygen-limited conditions with electrochemical redox control and changes in central energy metabolism were evaluated in comparison to the unmodified P. putida KT2440. In the new strain, phenazine synthesis with supernatant concentrations up to 33 μg/mL correlated linearly with the ability to discharge electrons to an anode, whereby phenazine-1-carboxylic acid served as the dominating redox mediator. P. putida pPhz sustained strongly oxygen-limited metabolism for up to 2 weeks at up to 12 μA/cm2 anodic current density. Together, this work lays a foundation for future oxygen-limited biocatalysis with P. putida strains.


Biofuels | 2013

Microbial electrocatalysis to guide biofuel and biochemical bioprocessing

Largus T. Angenent; Miriam A. Rosenbaum

131 ISSN 1759-7269 10.4155/BFS.12.93


Scientific Reports | 2016

Expanding the molecular toolkit for the homoacetogen Clostridium ljungdahlii.

Bastian Molitor; Kristina Kirchner; Alexander W. Henrich; Simone Schmitz; Miriam A. Rosenbaum

Increasing interest in homoacetogenic bacteria for the production of biochemicals and biofuels requisites the development of new genetic tools for these atypical production organisms. An attractive host for the conversion of synthesis gas or electricity into multi-carbon compounds is Clostridium ljungdahlii. So far only limited achievements in modifying this organism towards the production of industrially relevant compounds have been made. Therefore, there is still a strong need for developing new and optimizing existing genetic tools to efficiently access its metabolism. Here, we report on the development of a stable and reproducible transformation protocol that is applicable to C. ljungdahlii and several other clostridial species. Further, we demonstrate the functionality of a temperature-sensitive origin of replication in combination with a fluorescence marker system as important tools for future genetic engineering of this host for microbial bioproduction.


Applied and Environmental Microbiology | 2016

Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

Erick M. Bosire; Lars M. Blank; Miriam A. Rosenbaum

ABSTRACT Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa. We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm−2 with ∼150 μg ml−1 phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. IMPORTANCE Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial community to access a solid electrode as an alternative electron acceptor. To better understand the ecological relationships between mediator producers and mediator utilizers, we here present a comparison of the phenazine-dependent electroactivities of three Pseudomonas strains. This work forms the foundation for more complex coculture investigations of mediated electron transfer in microbial fuel cells.


Microbial Cell Factories | 2016

Efficient evaluation of cellulose digestibility by Trichoderma reesei Rut-C30 cultures in online monitored shake flasks

Elena Antonov; Steffen Wirth; Tim Gerlach; Ivan Schlembach; Miriam A. Rosenbaum; Lars Regestein; Jochen Büchs

BackgroundPretreated lignocellulosic biomass is considered as a suitable feedstock for the sustainable production of chemicals. However, the recalcitrant nature of cellulose often results in very cost-intensive overall production processes. A promising concept to reduce the costs is consolidated bioprocessing, which integrates in a single step cellulase production, cellulose hydrolysis, and fermentative conversion of produced sugars into a valuable product. This approach, however, requires assessing the digestibility of the applied celluloses and, thus, the released sugar amount during the fermentation. Since the released sugars are completely taken up by Trichoderma reesei Rut-C30 and the sugar consumption is stoichiometrically coupled to oxygen uptake, the respiration activity was measured to evaluate the digestibility of cellulose.ResultsThe method was successfully tested on commercial cellulosic substrates identifying a correlation between the respiration activity and the crystallinity of the substrate. Pulse experiments with cellulose and cellulases suggested that the respiration activity of T. reesei on cellulose can be divided into two distinct phases, one limited by enzyme activity and one by cellulose-binding-sites. The impact of known (cellobiose, sophorose, urea, tween 80, peptone) and new (miscanthus steepwater) compounds enhancing cellulase production was evaluated. Furthermore, the influence of two different pretreatment methods, the OrganoCat and OrganoSolv process, on the digestibility of beech wood saw dust was tested.ConclusionsThe introduced method allows an online evaluation of cellulose digestibility in complex and non-complex cultivation media. As the measurements are performed under fermentation conditions, it is a valuable tool to test different types of cellulose for consolidated bioprocessing applications. Furthermore, the method can be applied to identify new compounds, which influence cellulase production.


Biotechnology for Biofuels | 2017

Process relevant screening of cellulolytic organisms for consolidated bioprocessing

Elena Antonov; Ivan Schlembach; Lars Regestein; Miriam A. Rosenbaum; Jochen Büchs

BackgroundAlthough the biocatalytic conversion of cellulosic biomass could replace fossil oil for the production of various compounds, it is often not economically viable due to the high costs of cellulolytic enzymes. One possibility to reduce costs is consolidated bioprocessing (CBP), integrating cellulase production, hydrolysis of cellulose, and the fermentation of the released sugars to the desired product into one process step. To establish such a process, the most suitable cellulase-producing organism has to be identified. Thereby, it is crucial to evaluate the candidates under target process conditions. In this work, the chosen model process was the conversion of cellulose to the platform chemical itaconic acid by a mixed culture of a cellulolytic fungus with Aspergillus terreus as itaconic acid producer. Various cellulase producers were analyzed by the introduced freeze assay that measures the initial carbon release rate, quantifying initial cellulase activity under target process conditions. Promising candidates were then characterized online by monitoring their respiration activity metabolizing cellulose to assess the growth and enzyme production dynamics.ResultsThe screening of five different cellulase producers with the freeze assay identified Trichodermaxa0reesei and Penicilliumxa0verruculosum as most promising. The measurement of the respiration activity revealed a retarded induction of cellulase production for P.xa0verruculosum but a similar cellulase production rate afterwards, compared to T.xa0reesei. The freeze assay measurement depicted that P.xa0verruculosum reaches the highest initial carbon release rate among all investigated cellulase producers. After a modification of the cultivation procedure, these results were confirmed by the respiration activity measurement. To compare both methods, a correlation between the measured respiration activity and the initial carbon release rate of the freeze assay was introduced. The analysis revealed that the different initial enzyme/cellulose ratios as well as a discrepancy in cellulose digestibility are the main differences between the two approaches.ConclusionsWith two complementary methods to quantify cellulase activity and the dynamics of cellulase production for CBP applications, T.xa0reesei and P.xa0verruculosum were identified as compatible candidates for the chosen model process. The presented methods can easily be adapted to screen for suitable cellulose degrading organisms for various other applications.


Archive | 2017

Microbial Electrosynthesis I: Pure and Defined Mixed Culture Engineering

Miriam A. Rosenbaum; Carola Berger; Simone Schmitz; Ronny Uhlig

In the past 6xa0years, microbial bioelectrochemistry has strongly increased in attraction and audience when expanding from mainly environmental technology applications to biotechnology. In particular, the promise to combine electrosynthesis with microbial catalysis opens attractive approaches for new sustainable redox-cofactor recycling, redox-balancing, or even biosynthesis processes. Much of this promise is still not fulfilled, but it has opened and fueled entirely new research areas in this discipline. Activities in designing, tailoring, and applying specific microbial catalysts as pure or defined co-cultures for defined target bioproductions are greatly accelerating. This chapter gives an overview of the current progress as well as the emerging trends in molecular and ecological engineering of defined microbial biocatalysts to prepare them for evolving microbial electrosynthesis processes. In addition, the multitude of microbial electrosynthetic processes with complex undefined mixed cultures is covered by ter Heijne et al. (Adv Biochem Eng Biotechnol. https://doi.org/10.1007/10_2017_15 , 2017). Graphical Abstract.


Frontiers in Microbiology | 2017

Electrochemical Potential Influences Phenazine Production, Electron Transfer and Consequently Electric Current Generation by Pseudomonas aeruginosa

Erick M. Bosire; Miriam A. Rosenbaum

Pseudomonas aeruginosa has gained interest as a redox mediator (phenazines) producer in bioelectrochemical systems. Several biotic and abiotic factors influence the production of phenazines in synergy with the central virulence factors production regulation. It is, however, not clear how the electrochemical environment may influence the production and usage of phenazines by P. aeruginosa. We here determined the influence of the electrochemical potential on phenazine production and phenazine electron transfer capacity at selected applied potentials from -0.4 to +0.4 V (vs. Ag/AgClsat) using P. aeruginosa strain PA14. Our study reveals a profound influence of the electrochemical potential on the amount of phenazine-1-carboxylate production, whereby applied potentials that were more positive than the formal potential of this dominating phenazine (E° ′PCA = -0.24 V vs. Ag/AgClsat) stimulated more PCA production (94, 84, 128, and 140 μg mL-1 for -0.1, 0.1, 0.2, and 0.3 V, respectively) compared to more reduced potentials (38, 75, and 7 μg mL-1 for -0.4, -0.3, and -0.24 V, respectively). Interestingly, P. aeruginosa seems to produce an additional redox mediator (with E° ′ ∼ 0.052 V) at applied potentials below 0 V, which is most likely adsorbed to the electrode or present on the cells forming the biofilm around electrodes. At fairly negative applied electrode potentials, both PCA and the unknown redox compound mediate cathodic current generation. This study provides important insights applicable in optimizing the BES conditions and cultures for effective production and utilization of P. aeruginosa phenazines. It further stimulates investigations into the physiological impacts of the electrochemical environment, which might be decisive in the application of phenazines for electron transfer with P. aeruginosa pure- or microbial mixed cultures.

Collaboration


Dive into the Miriam A. Rosenbaum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars M. Blank

Technical University of Dortmund

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge