Miriam Kamps
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miriam Kamps.
Human Molecular Genetics | 2011
Winnok H. De Vos; Frederik Houben; Miriam Kamps; Ashraf Malhas; Fons Verheyen; Juliën Cox; Erik M. M. Manders; Valerie L.R.M. Verstraeten; Maurice A.M. van Steensel; Carlo Marcelis; Arthur van den Wijngaard; David J. Vaux; Frans C. S. Ramaekers; Jos L. V. Broers
The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the occurrence of intermittent, non-lethal ruptures of the nuclear envelope in dermal fibroblast cultures of patients with different mutations of lamin A/C. These ruptures, which were absent in normal fibroblasts, could be mimicked by selective knockdown as well as knockout of LMNA and were accompanied by the loss of cellular compartmentalization. This was demonstrated by the influx of cytoplasmic transcription factor RelA and regulatory protein Cyclin B1 into the nucleus, and efflux of nuclear transcription factor OCT1 and nuclear structures containing the promyelocytic leukemia (PML) tumour suppressor protein to the cytoplasm. While recovery of enhanced yellow fluorescent protein-tagged nuclear localization signal in the nucleus demonstrated restoration of nuclear membrane integrity, part of the mobile PML structures became permanently translocated to the cytoplasm. These satellite PML structures were devoid of the typical PML body components, such as DAXX, SP100 or SUMO1. Our data suggest that nuclear rupture and loss of compartmentalization may add to cellular dysfunction and disease development in various laminopathies.
Journal of Clinical Investigation | 2014
Ming Yan; Marie-Claude Gingras; Elaine A. Dunlop; Yann Nouët; Fanny Dupuy; Zahra Jalali; Elite Possik; Barry J. Coull; Dmitri Kharitidi; Anders Bondo Dydensborg; Brandon Faubert; Miriam Kamps; Sylvie Sabourin; Rachael S. Preston; David Mark Davies; Taren Roughead; Laëtitia Chotard; Maurice A.M. van Steensel; Russell G. Jones; Andrew R. Tee; Arnim Pause
The Warburg effect is a tumorigenic metabolic adaptation process characterized by augmented aerobic glycolysis, which enhances cellular bioenergetics. In normal cells, energy homeostasis is controlled by AMPK; however, its role in cancer is not understood, as both AMPK-dependent tumor-promoting and -inhibiting functions were reported. Upon stress, energy levels are maintained by increased mitochondrial biogenesis and glycolysis, controlled by transcriptional coactivator PGC-1α and HIF, respectively. In normoxia, AMPK induces PGC-1α, but how HIF is activated is unclear. Germline mutations in the gene encoding the tumor suppressor folliculin (FLCN) lead to Birt-Hogg-Dubé (BHD) syndrome, which is associated with an increased cancer risk. FLCN was identified as an AMPK binding partner, and we evaluated its role with respect to AMPK-dependent energy functions. We revealed that loss of FLCN constitutively activates AMPK, resulting in PGC-1α-mediated mitochondrial biogenesis and increased ROS production. ROS induced HIF transcriptional activity and drove Warburg metabolic reprogramming, coupling AMPK-dependent mitochondrial biogenesis to HIF-dependent metabolic changes. This reprogramming stimulated cellular bioenergetics and conferred a HIF-dependent tumorigenic advantage in FLCN-negative cancer cells. Moreover, this pathway is conserved in a BHD-derived tumor. These results indicate that FLCN inhibits tumorigenesis by preventing AMPK-dependent HIF activation and the subsequent Warburg metabolic transformation.
International Journal of Cancer | 2005
Anton H. N. Hopman; Miriam Kamps; Frank Smedts; Ernst-Jan M. Speel; C. Simon Herrington; Frans C. S. Ramaekers
Although there is consensus that HPV integration is common in invasive cervical carcinomas and uncommon or absent in low‐grade uterine cervical intraepithelial neoplasia (CIN I), estimates for HPV integration in CIN II/III range from 5 to 100% using different PCR‐based and in situ hybridization (ISH) approaches. It has been suggested that HPV integration can be identified using ISH by scoring of punctate signals. The increased sensitivity of fluorescence ISH (FISH) methods, allowing the detection of single copies of HPV, complicates the distinction between integrated and episomal HPV. Recently it has been suggested that, in such assays, the signals originating from integrated virus can be hidden in a background of episomal HPV. We therefore compared 2 different FISH protocols for the detection of integrated HPV in a series of CIN II/III lesions: 1) a mild protocol in which episomal HPV and RNA is retained and 2) a harsh protocol that extensively extracts proteins and RNA, and which promotes the partial loss of episomal HPV but not integrated HPV. A series of 28 HPV 16/18 positive CIN II/III lesions (17 solitary lesions and 11 lesions adjacent to microinvasive carcinoma) were studied. A punctate signal pattern was identified in 7 of these lesions with both protocols. Punctate signal was also present in control samples from lesions that are known to be associated with HPV integration (invasive squamous cell carcinoma (n = 3), adenocarcinoma in situ (n = 3), and invasive adenocarcinoma (n = 1). HPV RNA contributed significantly to the intensity of punctate FISH signal, especially when applying the mild protocol, as shown by omitting DNA denaturation, including RNase pretreatment steps and measuring the fluorescence signal intensity. Also, HPV RNA was frequently detected in addition to episomal/integrated HPV DNA in the majority of the other 21 CIN II/III lesions; this resulted in intense granular/diffuse FISH signals throughout the epithelium. However, in 7 of these lesions, the harsh protocol gave a more consistent punctate pattern in cells throughout the full thickness of the epithelium. This supports the hypothesis that the harsh protocol unmasks integrated HPV more efficiently by extracting RNA and episomal HPV. Overall, with this harsh protocol, a clonally expanded population of cells containing punctate HPV signals was found in 5 of 17 (29%) solitary CIN II/III lesions and in 9 of 11 (88%) CIN II/III lesions associated with microinvasive carcinoma. Combining these data with the results from our previous study, with the harsh protocol in 7 of 40 (18%) solitary CIN II/III lesions and 19/21 (90%) CIN II/III lesions associated with microinvasive carcinoma (p < 0.001), this pattern was found. This indicates that, when robustly defined, a punctate HPV pattern in CIN II/III lesions is associated with the presence of an invasive carcinoma.
Biochimica et Biophysica Acta | 2009
Frederik Houben; Chmp Coen Willems; Ilj Declercq; K Hochstenbach; Miriam Kamps; Lheh Luc Snoeckx; Fcs Frans Ramaekers; Jlv Jos Broers
The nuclear lamina and the cytoskeleton form an integrated structure that warrants proper mechanical functioning of cells. We have studied the correlation between structural alterations and migrational behaviour in fibroblasts with and without A-type lamins. We show that loss of A-type lamins causes loss of emerin and nesprin-3 from the nuclear envelope, concurring with a disturbance in the connection between the nucleus and the cytoskeleton in A-type lamin-deficient (lmna -/-) cells. In these cells functional migration assays during in vitro wound healing revealed a delayed reorientation of the nucleus and the microtubule-organizing center during migration, as well as a loss of nuclear oscillatory rotation. These observations in fibroblasts isolated from lmna knockout mice were confirmed in a 3T3 cell line with stable reduction of lmna expression due to RNAi approach. Our results indicate that A-type lamins play a key role in maintaining directional movement governed by the cytoskeleton, and that the loss of these karyoskeletal proteins has important consequences for functioning of the cell as a mechanical entity.
American Journal of Pathology | 2002
Anton H. N. Hopman; Miriam Kamps; Ernst J. M. Speel; Rene F. M. Schapers; Guido Sauter; Frans C. S. Ramaekers
Carcinoma in situ (CIS) of the urinary bladder is a flat, aggressive lesion and may be the most common precursor of invasive bladder cancer. Although chromosome 9 alterations are among the earliest and most prevalent genetic alterations in bladder cancer, discrepancy exists about the frequency of chromosome 9 losses in CIS. We analyzed 22 patients with CIS of the bladder (15 patients with isolated CIS, 7 patients combined with synchronous pTa or pT1 carcinomas) for gains and losses of chromosome (peri)centromere loci 1q12, 7p11-q11, 9p11-q12, and 9p21 harboring the INK4A/ARF locus (p16(INK4A)/p14(ARF)) and INK4B (p15(INK4B)) by multiple-target fluorescence in situ hybridization, and for p53 protein accumulation by immunohistochemistry. In 15 of 20 (75%) CIS lesions analyzed p53 overexpression was detected, whereas aneusomy for chromosomes 1 and 7 was identified in 20 of 22 (91%) CIS. In 13 of 22 (60%) CIS cases analyzed, 12 of which were not associated with a synchronous pTa or pT1 carcinoma, no numerical losses for chromosome 9 (p11-q12 and 9p21) were detected as compared with chromosomes 1 and 7. Furthermore 6 of 12 (50%) patients showed a metachronous invasive carcinoma within 2 years. In the remaining nine biopsies CIS lesions (40%) were recognized that showed losses of chromosome 9p11-q12 and 9p21, six of these were associated with a synchronous pTa or pT1 carcinoma. Three of these carcinomas were pTa and exhibited loss of 9q12 as well as a homozygous deletion of 9p21. The others were invasive carcinomas in which CIS lesions were also recognized that showed no numerical loss of chromosome 9, but did show an accumulation of p53. In conclusion our data demonstrate that predominantly isolated CIS lesions contained cells with no specific loss of chromosome 9, as opposed to CIS lesions with synchronous carcinomas that showed evidence of chromosome 9 loss. Furthermore our data strengthen the proposition that p53 mutations (p53 overexpression) precede loss of chromosomes 9 and 9p21 in CIS as precursor for invasive bladder cancer, as opposed to noninvasive carcinomas where chromosome 9 (9p11-q12) losses are early and frequently combined with homozygous deletions of 9p21.
Human Molecular Genetics | 2013
Monique Luijten; Sander G. Basten; Tijs Claessens; Marigje Vernooij; Claire L. Scott; Renske Janssen; Jennifer A. Easton; Miriam Kamps; Maaike Vreeburg; Jos L. V. Broers; Michel van Geel; Fred H. Menko; Richard P. Harbottle; Ravi K. Nookala; Andrew R. Tee; Stephen C. Land; Rachel H. Giles; Barry J. Coull; Maurice A.M. van Steensel
Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder where patients are predisposed to kidney cancer, lung and kidney cysts and benign skin tumors. BHD is caused by heterozygous mutations affecting folliculin (FLCN), a conserved protein that is considered a tumor suppressor. Previous research has uncovered multiple roles for FLCN in cellular physiology, yet it remains unclear how these translate to BHD lesions. Since BHD manifests hallmark characteristics of ciliopathies, we speculated that FLCN might also have a ciliary role. Our data indicate that FLCN localizes to motile and non-motile cilia, centrosomes and the mitotic spindle. Alteration of FLCN levels can cause changes to the onset of ciliogenesis, without abrogating it. In three-dimensional culture, abnormal expression of FLCN disrupts polarized growth of kidney cells and deregulates canonical Wnt signalling. Our findings further suggest that BHD-causing FLCN mutants may retain partial functionality. Thus, several BHD symptoms may be due to abnormal levels of FLCN rather than its complete loss and accordingly, we show expression of mutant FLCN in a BHD-associated renal carcinoma. We propose that BHD is a novel ciliopathy, its symptoms at least partly due to abnormal ciliogenesis and canonical Wnt signalling.
Journal of Investigative Dermatology | 2012
Jennifer A. Easton; Steven Donnelly; Miriam Kamps; Peter M. Steijlen; Patricia E. Martin; Gianluca Tadini; René W. A. Janssens; Rudolf Happle; Michel van Geel; Maurice A.M. van Steensel
Porokeratotic eccrine ostial and dermal duct nevus, or porokeratotic eccrine nevus (PEN), is a hyperkeratotic epidermal nevus. Several cases of widespread involvement have been reported, including one in association with the keratitis–ichthyosis–deafness (KID) syndrome (OMIM #148210), a rare disorder caused by mutations in the GJB2 gene coding for the gap junction protein connexin26 (Cx26). The molecular cause is, as yet, unknown. We have noted that PEN histopathology is shared by KID. The clinical appearance of PEN can resemble that of KID syndrome. Furthermore, a recent report of cutaneous mosaicism for a GJB2 mutation associated with KID describes linear hyperkeratotic skin lesions that might be consistent with PEN. From this, we hypothesized that PEN might be caused by Cx26 mutations associated with KID or similar gap junction disorders. Thus, we analyzed the GJB2 gene in skin samples from two patients referred with generalized PEN. In both, we found GJB2 mutations in the PEN lesions but not in unaffected skin or peripheral blood. One mutation was already known to cause the KID syndrome, and the other had not been previously associated with skin symptoms. We provide extensive functional data to support its pathogenicity. We conclude that PEN may be caused by mosaic GJB2 mutations.
Autophagy | 2014
Elaine A. Dunlop; Sara Seifan; Tijs Claessens; Christian Behrends; Miriam Kamps; Ewelina Rozycka; Alain J. Kemp; Ravi K. Nookala; John Blenis; Barry J. Coull; James Murray; Maurice A.M. van Steensel; Simon Wilkinson; Andrew R. Tee
Birt-Hogg-Dubé (BHD) syndrome is a rare autosomal dominant condition caused by mutations in the FLCN gene and characterized by benign hair follicle tumors, pneumothorax, and renal cancer. Folliculin (FLCN), the protein product of the FLCN gene, is a poorly characterized tumor suppressor protein, currently linked to multiple cellular pathways. Autophagy maintains cellular homeostasis by removing damaged organelles and macromolecules. Although the autophagy kinase ULK1 drives autophagy, the underlying mechanisms are still being unraveled and few ULK1 substrates have been identified to date. Here, we identify that loss of FLCN moderately impairs basal autophagic flux, while re-expression of FLCN rescues autophagy. We reveal that the FLCN complex is regulated by ULK1 and elucidate 3 novel phosphorylation sites (Ser406, Ser537, and Ser542) within FLCN, which are induced by ULK1 overexpression. In addition, our findings demonstrate that FLCN interacts with a second integral component of the autophagy machinery, GABA(A) receptor-associated protein (GABARAP). The FLCN-GABARAP association is modulated by the presence of either folliculin-interacting protein (FNIP)-1 or FNIP2 and further regulated by ULK1. As observed by elevation of GABARAP, sequestome 1 (SQSTM1) and microtubule-associated protein 1 light chain 3 (MAP1LC3B) in chromophobe and clear cell tumors from a BHD patient, we found that autophagy is impaired in BHD-associated renal tumors. Consequently, this work reveals a novel facet of autophagy regulation by ULK1 and substantially contributes to our understanding of FLCN function by linking it directly to autophagy through GABARAP and ULK1.
Journal of Cellular and Molecular Medicine | 2009
Valerie L.R.M. Verstraeten; Sandrine Caputo; Maurice A.M. van Steensel; Isabelle Duband-Goulet; Sophie Zinn-Justin; Miriam Kamps; Helma J.H. Kuijpers; Cecilia Östlund; Howard J. Worman; Jacob J. Briedé; Caroline Le Dour; Carlo Marcelis; Michel van Geel; Peter M. Steijlen; Arthur van den Wijngaard; Frans C. S. Ramaekers; Jos L. V. Broers
Dunnigan‐type familial partial lipodystrophy (FPLD) is a laminopathy characterized by an aberrant fat distribution and a metabolic syndrome for which oxidative stress has recently been suggested as one of the disease‐causing mechanisms. In a family affected with FPLD, we identified a heterozygous missense mutation c.1315C>T in the LMNA gene leading to the p.R439C substitution. Cultured patient fibroblasts do not show any prelamin A accumulation and reveal honeycomb‐like lamin A/C formations in a significant percentage of nuclei. The mutation affects a region in the C‐terminal globular domain of lamins A and C, different from the FPLD‐related hot spot. Here, the introduction of an extra cysteine allows for the formation of disulphide‐mediated lamin A/C oligomers. This oligomerization affects the interaction properties of the C‐terminal domain with DNA as shown by gel retardation assays and causes a DNA‐interaction pattern that is distinct from the classical R482W FPLD mutant. Particularly, whereas the R482W mutation decreases the binding efficiency of the C‐terminal domain to DNA, the R439C mutation increases it. Electron spin resonance spectroscopy studies show significantly higher levels of reactive oxygen species (ROS) upon induction of oxidative stress in R439C patient fibroblasts compared to healthy controls. This increased sensitivity to oxidative stress seems independent of the oligomerization and enhanced DNA binding typical for R439C, as both the R439C and R482W mutants show a similar and significant increase in ROS upon induction of oxidative stress by H2O2.
Nucleus | 2013
C Chiara Tamiello; Miriam Kamps; Arthur van den Wijngaard; Valerie L.R.M. Verstraeten; Frank P. T. Baaijens; Jos Broers; Carlijn Vc Bouten
Laminopathies, mainly caused by mutations in the LMNA gene, are a group of inherited diseases with a highly variable penetrance; i.e., the disease spectrum in persons with identical LMNA mutations range from symptom-free conditions to severe cardiomyopathy and progeria, leading to early death. LMNA mutations cause nuclear abnormalities and cellular fragility in response to cellular mechanical stress, but the genotype/phenotype correlations in these diseases remain unclear. Consequently, tools such as mutation analysis are not adequate for predicting the course of the disease. Here, we employ growth substrate stiffness to probe nuclear fragility in cultured dermal fibroblasts from a laminopathy patient with compound progeroid syndrome. We show that culturing of these cells on substrates with stiffness higher than 10 kPa results in malformations and even rupture of the nuclei, while culture on a soft substrate (3 kPa) protects the nuclei from morphological alterations and ruptures. No malformations were seen in healthy control cells at any substrate stiffness. In addition, analysis of the actin cytoskeleton organization in this laminopathy cells demonstrates that the onset of nuclear abnormalities correlates to an increase in cytoskeletal tension. Together, these data indicate that culturing of these LMNA mutated cells on substrates with a range of different stiffnesses can be used to probe the degree of nuclear fragility. This assay may be useful in predicting patient-specific phenotypic development and in investigations on the underlying mechanisms of nuclear and cellular fragility in laminopathies.