Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miriam-Rose Ash is active.

Publication


Featured researches published by Miriam-Rose Ash.


Journal of Biological Chemistry | 2010

Potassium-activated GTPase Reaction in the G Protein-coupled Ferrous Iron Transporter B

Miriam-Rose Ash; Amy P. Guilfoyle; Ronald J. Clarke; J. Mitchell Guss; Megan J. Maher; Mika Jormakka

FeoB is a prokaryotic membrane protein responsible for the import of ferrous iron (Fe2+). A defining feature of FeoB is that it includes an N-terminal 30-kDa soluble domain with GTPase activity, which is required for iron transport. However, the low intrinsic GTP hydrolysis rate of this domain appears to be too slow for FeoB either to function as a channel or to possess an active Fe2+ membrane transport mechanism. Here, we present crystal structures of the soluble domain of FeoB from Streptococcus thermophilus in complex with GDP and with the GTP analogue derivative 2′-(or -3′)-O-(N-methylanthraniloyl)-β,γ-imidoguanosine 5′-triphosphate (mant-GMPPNP). Unlike recent structures of the G protein domain, the mant-GMPPNP-bound structure shows clearly resolved, active conformations of the critical Switch motifs. Importantly, biochemical analyses demonstrate that the GTPase activity of FeoB is activated by K+, which leads to a 20-fold acceleration in its hydrolysis rate. Analysis of the structure identified a conserved asparagine residue likely to be involved in K+ coordination, and mutation of this residue abolished K+-dependent activation. We suggest that this, together with a second asparagine residue that we show is critical for the structure of the Switch I loop, allows the prediction of K+-dependent activation in G proteins. In addition, the accelerated hydrolysis rate opens up the possibility that FeoB might indeed function as an active transporter.


Journal of the American Chemical Society | 2009

Unprecedented binding cooperativity between Cu(I) and Cu(II) in the copper resistance protein CopK from Cupriavidus metallidurans CH34: implications from structural studies by NMR spectroscopy and X-ray crystallography.

Lee Xin Chong; Miriam-Rose Ash; Megan J. Maher; Mark G. Hinds; Zhiguang Xiao; Anthony G. Wedd

The bacterium Cupriavidus metallidurans CH34 is resistant to high environmental concentrations of many metal ions, including copper. This ability arises primarily from the presence of a large plasmid pMOL30 which includes a cluster of 19 cop genes that respond to copper. One of the protein products CopK is induced at high levels and is expressed to the periplasm as a small soluble protein (8.3 kDa). Apo-CopK associates in solution to form a dimer (K(D) approximately 10(-5) M) whose structure was defined by NMR and X-ray crystallography. The individual molecules feature two antiparallel beta-sheets arranged in a sandwich-like structure and interact through C-terminal beta-strands. It binds Cu(II) with low affinity (K(D)(Cu(II)) > 10(-6) M) but Cu(I) with high affinity (K(D)(Cu(I)) = 2 x 10(-11) M). Cu(I)-CopK was also a dimer in the solid state and featured a distorted tetrahedral site Cu(I)(S-Met)(3)(NCS). The isothiocyanato ligand originated from the crystallization solution. Binding of Cu(I) or Ag(I), but not of Cu(II), favored the monomeric form in solution. While Ag(I)-CopK was stable as isolated, Cu(I)-CopK was moderately air-sensitive due to a strong binding cooperativity between Cu(I) and Cu(II). This was documented by determination of the Cu(I) and Cu(II) binding affinities in the presence of the other ion: K(D)(Cu(I)) = 2 x 10(-13) M and K(D)(Cu(II)) = 3 x 10(-12) M, that is, binding of Cu(II) increased the affinity for Cu(I) by a factor of approximately 10(2) and binding of Cu(I) increased the affinity for Cu(II) by a factor of at least 10(6). Stable forms of both Cu(I)Cu(II)-CopK and Ag(I)Cu(II)-CopK were isolated readily. Consistent with this unprecedented copper binding chemistry, NMR spectroscopy detected three distinct forms: apo-CopK, Cu(I)-CopK and Cu(I)Cu(II)-CopK that do not exchange on the NMR time scale. This information provides a valuable guide to the role of CopK in copper resistance.


PLOS ONE | 2011

The Initiation of GTP Hydrolysis by the G-Domain of FeoB: Insights from a Transition-State Complex Structure

Miriam-Rose Ash; Megan J. Maher; J. Mitchell Guss; Mika Jormakka

The polytopic membrane protein FeoB is a ferrous iron transporter in prokaryotes. The protein contains a potassium-activated GTPase domain that is essential in regulating the import of iron and conferring virulence to many disease-causing bacteria. However, the mechanism by which the G-domain of FeoB hydrolyzes GTP is not well understood. In particular, it is not yet known how the pivotal step in GTP hydrolysis is achieved: alignment of a catalytic water molecule. In the current study, the crystal structure of the soluble domains from Streptococcus thermophilus FeoB (NFeoBSt) in complex with the activating potassium ion and a transition-state analogue, GDP⋅AlF4 −, reveals a novel mode of water alignment involving contacts with the protein backbone only. In parallel to the structural studies, a series of seven mutant proteins were constructed that targeted conserved residues at the active site of NFeoBSt, and the nucleotide binding and hydrolysis properties of these were measured and compared to the wild-type protein. The results show that mutations in Thr35 abolish GTPase activity of the protein, while other conserved residues (Tyr58, Ser64, Glu66 and Glu67) are not required for water alignment by NFeoBSt. Together with the crystal structure, the findings suggest a new mechanism for hydrolysis initiation in small G-proteins, in which the attacking water molecule is aligned by contacts with the protein backbone only.


FEBS Letters | 2012

The cation-dependent G-proteins: In a class of their own

Miriam-Rose Ash; Megan J. Maher; J. Mitchell Guss; Mika Jormakka

G‐proteins are some of the most important and abundant enzymes, yet their intrinsic nucleotide hydrolysis reaction is notoriously slow and must be accelerated in vivo. Recent experiments on dynamin and GTPases involved in ribosome assembly have demonstrated that their hydrolysis activities are stimulated by potassium ions. This article presents the hypothesis that cation‐mediated activation of G‐proteins is more common than currently realised, and that such GTPases represent a structurally and functionally unique class of G‐proteins. Based on sequence analysis we provide a list of predicted cation‐dependent GTPases, which encompasses almost all members of the TEES, Obg‐HflX, YqeH‐like and dynamin superfamilies. The results from this analysis effectively re‐define the conditions under which many of these G‐proteins should be studied in vitro.


Biochemistry | 2011

Molecular Basis of the Cooperative Binding of Cu(I) and Cu(II) to the CopK Protein from Cupriavidus metallidurans CH34

Miriam-Rose Ash; Lee Xin Chong; Megan J. Maher; Mark G. Hinds; Zhiguang Xiao; Anthony G. Wedd

The bacterium Cupriavidus metallidurans CH34 is resistant to high environmental concentrations of many metal ions. Upon copper challenge, it upregulates the periplasmic protein CopK (8.3 kDa). The function of CopK in the copper resistance response is ill-defined, but CopK demonstrates an intriguing cooperativity: occupation of a high-affinity Cu(I) binding site generates a high-affinity Cu(II) binding site, and the high-affinity Cu(II) binding enhances Cu(I) binding. Native CopK and targeted variants were examined by chromatographic, spectroscopic, and X-ray crystallographic probes. Structures of two distinct forms of Cu(I)Cu(II)-CopK were defined, and structural changes associated with occupation of the Cu(II) site were demonstrated. In solution, monomeric Cu(I)Cu(II)-CopK features the previously elucidated Cu(I) site in Cu(I)-CopK, formed from four S(δ) atoms of Met28, -38, -44, and -54 (site 4S). Binding of Cu(I) to apo-CopK induces a conformational change that releases the C-terminal β-strand from the β-sandwich structure. In turn, this allows His70 and N-terminal residues to form a large loop that includes the Cu(II) binding site. In crystals, a polymeric form of Cu(I)Cu(II)-CopK displays a Cu(I) site defined by the S(δ) atoms of Met26, -38, and -54 (site 3S) and an exogenous ligand (modeled as H(2)O) and a Cu(II) site that bridges dimeric CopK molecules. The 3S Cu(I) binding mode observed in crystals was demonstrated in solution in protein variant M44L where site 4S is disabled. The intriguing copper binding chemistry of CopK provides molecular insight into Cu(I) transfer processes. The adaptable nature of the Cu(I) coordination sphere in methionine-rich clusters allows copper to be relayed between clusters during transport across membranes in molecular pumps such as CusA and Ctr1.


PLOS ONE | 2014

A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate

Hassina Azouaoui; Cédric Montigny; Miriam-Rose Ash; Frank Fijalkowski; Aurore Jacquot; Christina Grønberg; Rosa L. López-Marqués; Michael G. Palmgren; Manuel Garrigos; Marc le Maire; Paulette Decottignies; Pontus Gourdon; Poul Nissen; Philippe Champeil; Guillaume Lenoir

P-type ATPases from the P4 subfamily (P4-ATPases) are energy-dependent transporters, which are thought to establish lipid asymmetry in eukaryotic cell membranes. Together with their Cdc50 accessory subunits, P4-ATPases couple ATP hydrolysis to lipid transport from the exoplasmic to the cytoplasmic leaflet of plasma membranes, late Golgi membranes, and endosomes. To gain insights into the structure and function of these important membrane pumps, robust protocols for expression and purification are required. In this report, we present a procedure for high-yield co-expression of a yeast flippase, the Drs2p-Cdc50p complex. After recovery of yeast membranes expressing both proteins, efficient purification was achieved in a single step by affinity chromatography on streptavidin beads, yielding ∼1–2 mg purified Drs2p-Cdc50p complex per liter of culture. Importantly, the procedure enabled us to recover a fraction that mainly contained a 1∶1 complex, which was assessed by size-exclusion chromatography and mass spectrometry. The functional properties of the purified complex were examined, including the dependence of its catalytic cycle on specific lipids. The dephosphorylation rate was stimulated in the simultaneous presence of the transported substrate, phosphatidylserine (PS), and the regulatory lipid phosphatidylinositol-4-phosphate (PI4P), a phosphoinositide that plays critical roles in membrane trafficking events from the trans-Golgi network (TGN). Likewise, overall ATP hydrolysis by the complex was critically dependent on the simultaneous presence of PI4P and PS. We also identified a prominent role for PI4P in stabilization of the Drs2p-Cdc50p complex towards temperature- or C12E8-induced irreversible inactivation. These results indicate that the Drs2p-Cdc50p complex remains functional after affinity purification and that PI4P as a cofactor tightly controls its stability and catalytic activity. This work offers appealing perspectives for detailed structural and functional characterization of the Drs2p-Cdc50p lipid transport mechanism.


Journal of Biological Chemistry | 2017

High phosphatidylinositol 4-phosphate (PI4P)-dependent ATPase activity for the Drs2p-Cdc50p flippase after removal of its N- and C-terminal extensions

Hassina Azouaoui; Cédric Montigny; Thibaud Dieudonné; Philippe Champeil; Aurore Jacquot; José Luis Vázquez-Ibar; Pierre Le Maréchal; Jakob Ulstrup; Miriam-Rose Ash; Joseph A. Lyons; Poul Nissen; Guillaume Lenoir

P4-ATPases, also known as phospholipid flippases, are responsible for creating and maintaining transbilayer lipid asymmetry in eukaryotic cell membranes. Here, we use limited proteolysis to investigate the role of the N and C termini in ATP hydrolysis and auto-inhibition of the yeast flippase Drs2p-Cdc50p. We show that limited proteolysis of the detergent-solubilized and purified yeast flippase may result in more than 1 order of magnitude increase of its ATPase activity, which remains dependent on phosphatidylinositol 4-phosphate (PI4P), a regulator of this lipid flippase, and specific to a phosphatidylserine substrate. Using thrombin as the protease, Cdc50p remains intact and in complex with Drs2p, which is cleaved at two positions, namely after Arg104 and after Arg 1290, resulting in a homogeneous sample lacking 104 and 65 residues from its N and C termini, respectively. Removal of the 1291–1302-amino acid region of the C-terminal extension is critical for relieving the auto-inhibition of full-length Drs2p, whereas the 1–104 N-terminal residues have an additional but more modest significance for activity. The present results therefore reveal that trimming off appropriate regions of the terminal extensions of Drs2p can greatly increase its ATPase activity in the presence of PI4P and demonstrate that relief of such auto-inhibition remains compatible with subsequent regulation by PI4P. These experiments suggest that activation of the Drs2p-Cdc50p flippase follows a multistep mechanism, with preliminary release of a number of constraints, possibly through the binding of regulatory proteins in the trans-Golgi network, followed by full activation by PI4P.


Acta Crystallographica Section D-biological Crystallography | 2011

A suite of Switch I and Switch II mutant structures from the G-protein domain of FeoB

Miriam-Rose Ash; Megan J. Maher; J.M. Guss; Mika Jormakka


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2011

The structure of an N11A mutant of the G-protein domain of FeoB.

Miriam-Rose Ash; Megan J. Maher; J.M. Guss; Mika Jormakka


Biophysical Journal | 2014

A GTPase chimera illustrates an uncoupled nucleotide affinity and release rate, providing insight into the activation mechanism.

Amy P. Guilfoyle; Chandrika N. Deshpande; Josep Font Sadurni; Miriam-Rose Ash; Samuel Tourle; Gerhard Schenk; Megan J. Maher; Mika Jormakka

Collaboration


Dive into the Miriam-Rose Ash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cédric Montigny

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Guillaume Lenoir

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge