Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miriam Scadeng is active.

Publication


Featured researches published by Miriam Scadeng.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases

Emilia S. Olson; Tao Jiang; Todd A. Aguilera; Quyen T. Nguyen; Lesley G. Ellies; Miriam Scadeng; Roger Y. Tsien

High-resolution imaging of molecules intrinsically involved in malignancy and metastasis would be of great value for clinical detection and staging of tumors. We now report in vivo visualization of matrix metalloproteinase activities by MRI and fluorescence of dendrimeric nanoparticles coated with activatable cell penetrating peptides (ACPPs), labeled with Cy5, gadolinium, or both. Uptake of such nanoparticles in tumors is 4- to 15-fold higher than for unconjugated ACPPs. With fluorescent molecules, we are able to detect residual tumor and metastases as small as 200 μm, which can be resected under fluorescence guidance and analyzed histopathologically with fluorescence microscopy. We show that uptake via this mechanism is comparable to that of other near infrared protease sensors, with the added advantage that the approach is translatable to MRI. Once activated, the Gd-labeled nanoparticles deposit high levels (30–50 μM) of Gd in tumor parenchyma with even higher amounts deposited in regions of infiltrative tumor, resulting in useful T1 contrast lasting several days after injection. These results should improve MRI-guided clinical staging, presurgical planning, and intraoperative fluorescence-guided surgery. The approach may be generalizable to deliver radiation-sensitizing and chemotherapeutic agents.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival

Quyen T. Nguyen; Emilia S. Olson; Todd A. Aguilera; Tao Jiang; Miriam Scadeng; Lesley G. Ellies; Roger Y. Tsien

The completeness of tumor removal during surgery is dependent on the surgeon’s ability to differentiate tumor from normal tissue using subjective criteria that are not easily quantifiable. A way to objectively assess tumor margins during surgery in patients would be of great value. We have developed a method to visualize tumors during surgery using activatable cell-penetrating peptides (ACPPs), in which the fluorescently labeled, polycationic cell-penetrating peptide (CPP) is coupled via a cleavable linker to a neutralizing peptide. Upon exposure to proteases characteristic of tumor tissue, the linker is cleaved, dissociating the inhibitory peptide and allowing the CPP to bind to and enter tumor cells. In mice, xenografts stably transfected with green fluorescent protein show colocalization with the Cy5-labeled ACPPs. In the same mouse models, Cy5-labeled free ACPPs and ACPPs conjugated to dendrimers (ACPPDs) delineate the margin between tumor and adjacent tissue, resulting in improved precision of tumor resection. Surgery guided by ACPPD resulted in fewer residual cancer cells left in the animal after surgery as measured by Alu PCR. A single injection of ACPPD dually labeled with Cy5 and gadolinium chelates enabled preoperative whole-body tumor detection by MRI, intraoperative guidance by real-time fluorescence, intraoperative histological analysis of margin status by fluorescence, and postoperative MRI tumor quantification. Animals whose tumors were resected with ACPPD guidance had better long-term tumor-free survival and overall survival than animals whose tumors were resected with traditional bright-field illumination only.


Nature Medicine | 2009

Development of a novel mouse glioma model using lentiviral vectors.

Tomotoshi Marumoto; Ayumu Tashiro; Dinorah Friedmann-Morvinski; Miriam Scadeng; Yasushi Soda; Fred H. Gage; Inder M. Verma

We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP–controlled lentiviral vectors expressing oncogenes. Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein–positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested. Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus. However, tumors were rarely detected when the mice were transduced in the cortex. Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme–like tumors, which contained CD133+ cells, formed tumorspheres and could differentiate into neurons and astrocytes. We suggest that the use of Cre-loxP–controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Cortical depth-specific microvascular dilation underlies laminar differences in blood oxygenation level-dependent functional MRI signal

Peifang Tian; Ivan C. Teng; Larry D. May; Ronald Kurz; Kun Lu; Miriam Scadeng; Elizabeth M. C. Hillman; Alex de Crespigny; Helen D’Arceuil; Joseph B. Mandeville; John J. A. Marota; Bruce R. Rosen; Thomas T. Liu; David A. Boas; Richard B. Buxton; Anders M. Dale; Anna Devor

Changes in neuronal activity are accompanied by the release of vasoactive mediators that cause microscopic dilation and constriction of the cerebral microvasculature and are manifested in macroscopic blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signals. We used two-photon microscopy to measure the diameters of single arterioles and capillaries at different depths within the rat primary somatosensory cortex. These measurements were compared with cortical depth-resolved fMRI signal changes. Our microscopic results demonstrate a spatial gradient of dilation onset and peak times consistent with “upstream” propagation of vasodilation toward the cortical surface along the diving arterioles and “downstream” propagation into local capillary beds. The observed BOLD response exhibited the fastest onset in deep layers, and the “initial dip” was most pronounced in layer I. The present results indicate that both the onset of the BOLD response and the initial dip depend on cortical depth and can be explained, at least in part, by the spatial gradient of delays in microvascular dilation, the fastest response being in the deep layers and the most delayed response in the capillary bed of layer I.


Cell | 2011

Adipocyte NCoR Knockout Decreases PPARγ Phosphorylation and Enhances PPARγ Activity and Insulin Sensitivity

Pingping Li; WuQiang Fan; Jianfeng Xu; Min Lu; Hiroyasu Yamamoto; Johan Auwerx; Dorothy D. Sears; Saswata Talukdar; Dayoung Oh; Ai Chen; Gautam Bandyopadhyay; Miriam Scadeng; Jachelle M. Ofrecio; Sarah Nalbandian; Jerrold M. Olefsky

Insulin resistance, tissue inflammation, and adipose tissue dysfunction are features of obesity and Type 2 diabetes. We generated adipocyte-specific Nuclear Receptor Corepressor (NCoR) knockout (AKO) mice to investigate the function of NCoR in adipocyte biology, glucose and insulin homeostasis. Despite increased obesity, glucose tolerance was improved in AKO mice, and clamp studies demonstrated enhanced insulin sensitivity in liver, muscle, and fat. Adipose tissue macrophage infiltration and inflammation were also decreased. PPARγ response genes were upregulated in adipose tissue from AKO mice and CDK5-mediated PPARγ ser-273 phosphorylation was reduced, creating a constitutively active PPARγ state. This identifies NCoR as an adaptor protein that enhances the ability of CDK5 to associate with and phosphorylate PPARγ. The dominant function of adipocyte NCoR is to transrepress PPARγ and promote PPARγ ser-273 phosphorylation, such that NCoR deletion leads to adipogenesis, reduced inflammation, and enhanced systemic insulin sensitivity, phenocopying the TZD-treated state.


Cell Metabolism | 2012

Maintenance of Metabolic Homeostasis by Sestrin2 and Sestrin3

Jun Hee Lee; Saswata Talukdar; Eek Joong Park; Hae Li Park; Hwan Woo Park; Gautam Bandyopadhyay; Ning Li; Mariam Aghajan; Insook Jang; Amber M. Wolfe; Guy A. Perkins; Mark H. Ellisman; Ethan Bier; Miriam Scadeng; Marc Foretz; Benoit Viollet; Jerrold M. Olefsky; Michael Karin

Chronic activation of mammalian target of rapamycin complex 1 (mTORC1) and p70 S6 kinase (S6K) in response to hypernutrition contributes to obesity-associated metabolic pathologies, including hepatosteatosis and insulin resistance. Sestrins are stress-inducible proteins that activate AMP-activated protein kinase (AMPK) and suppress mTORC1-S6K activity, but their role in mammalian physiology and metabolism has not been investigated. We show that Sestrin2--encoded by the Sesn2 locus, whose expression is induced upon hypernutrition--maintains metabolic homeostasis in liver of obese mice. Sesn2 ablation exacerbates obesity-induced mTORC1-S6K activation, glucose intolerance, insulin resistance, and hepatosteatosis, all of which are reversed by AMPK activation. Furthermore, concomitant ablation of Sesn2 and Sesn3 provokes hepatic mTORC1-S6K activation and insulin resistance even in the absence of nutritional overload and obesity. These results demonstrate an important homeostatic function for the stress-inducible Sestrin protein family in the control of mammalian lipid and glucose metabolism.


Nature Medicine | 2007

Bone marrow-specific Cap gene deletion protects against high-fat diet-induced insulin resistance.

Lisa A. Lesniewski; Sarah E. Hosch; Jaap G. Neels; Carl de Luca; Mohammad Pashmforoush; Shian Huey Chiang; Miriam Scadeng; Alan R. Saltiel; Jerrold M. Olefsky

Cbl-associated protein (Cap) is a member of a phosphatidylinositol 3-kinase–independent pathway for insulin-stimulated translocation of the glucose transporter GLUT4. Despite this positive role of Cap in glucose uptake, here we show that deletion of the gene encoding Cap (official gene name: Sorbs1) protects against high-fat diet (HFD)–induced insulin resistance in mice while also having an opposite, insulin-sensitizing effect, accompanied by reduced tissue markers of inflammation. Given the emerging role of chronic inflammation in insulin resistance and the macrophage in initiating this inflammatory process, we considered that Sorbs1 deletion from macrophages may have resulted in the observed protection from HFD-induced insulin resistance. Using bone marrow transplantation to generate functional Sorbs1-null macrophages, we show that the insulin-sensitive phenotype can be transferred to wild-type mice by transplantation of Sorbs1-null bone marrow. These studies show that macrophages are an important cell type in the induction of insulin resistance and that Cap has a modulatory role in this function.


Journal of Clinical Investigation | 2009

The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice

Alexander Weidemann; Yann M. Kerdiles; Christopher Rafie; Adam T. Boutin; Christian Stockmann; Norihiko Takeda; Miriam Scadeng; Andy Y. Shih; Volker H. Haase; M. Celeste Simon; David Kleinfeld; Randall S. Johnson

A key adaptation to environmental hypoxia is an increase in erythropoiesis, driven by the hormone erythropoietin (EPO) through what is traditionally thought to be primarily a renal response. However, both neurons and astrocytes (the largest subpopulation of glial cells in the CNS) also express EPO following ischemic injury, and this response is known to ameliorate damage to the brain. To investigate the role of glial cells as a component of the systemic response to hypoxia, we created astrocyte-specific deletions of the murine genes encoding the hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha and their negative regulator von Hippel-Lindau (VHL) as well as astrocyte-specific deletion of the HIF target gene Vegf. We found that loss of the hypoxic response in astrocytes does not cause anemia in mice but is necessary for approximately 50% of the acute erythropoietic response to hypoxic stress. In accord with this, erythroid progenitor cells and reticulocytes were substantially reduced in number in mice lacking HIF function in astrocytes following hypoxic stress. Thus, we have demonstrated that the glial component of the CNS is an essential component of hypoxia-induced erythropoiesis.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer

Jochen Stritzker; Lorenz Kirscher; Miriam Scadeng; Nikolaos C. Deliolanis; Stefan Morscher; Panagiotis Symvoulidis; Karin Schaefer; Qian Zhang; Lisa Buckel; Michael Hess; Ulrike Donat; William G. Bradley; Vasilis Ntziachristos; Aladar A. Szalay

We reported earlier the delivery of antiangiogenic single chain antibodies by using oncolytic vaccinia virus strains to enhance their therapeutic efficacy. Here, we provide evidence that gene-evoked production of melanin can be used as a therapeutic and diagnostic mediator, as exemplified by insertion of only one or two genes into the genome of an oncolytic vaccinia virus strain. We found that produced melanin is an excellent reporter for optical imaging without addition of substrate. Melanin production also facilitated deep tissue optoacoustic imaging as well as MRI. In addition, melanin was shown to be a suitable target for laser-induced thermotherapy and enhanced oncolytic viral therapy. In conclusion, melanin as a mediator for thermotherapy and reporter for different imaging modalities may soon become a versatile alternative to replace fluorescent proteins also in other biological systems. After ongoing extensive preclinical studies, melanin overproducing oncolytic virus strains might be used in clinical trials in patients with cancer.


Cancer Biology & Therapy | 2009

Induction of in vivo synthetic lethal RNAi responses to treat glioblastoma.

Hiroyuki Michiue; Akiko Eguchi; Miriam Scadeng; Steven F. Dowdy

Glioblastoma multiforme remains one of the most intractable human malignancies. Glioblastomas arise due to activation of multiple oncogenic pathways leading to increased cellular growth, proliferation and tumor cell survival. siRNA induced RNA Interference (RNAi) responses result in the degradation of specific mRNA species. In theory, RNAi responses can selectively target intersecting oncogenic pathways to induce a tumor cell specific RNAi synthetic lethal response. However, the concept of inducing in vivo synthetic lethal RNAi responses has not yet been addressed. Here we tested the in vivo ability of synthetic lethal RNAi responses to treat glioblastoma. To deliver siRNAs into cells, we fused a peptide transduction delivery domain to a dsRNA-binding domain (PTD-DRBD). DRBDs avidly bind to siRNAs, masking the siRNA anionic negative charge and allowing for efficient PTD-mediated siRNA delivery into the entire cell population. Combinatorial targeting of EGF-Receptor (EGFR) and Akt2, but not Ak1 or Akt3, by PTD-DRBD delivered siRNAs synergized to induce tumor cell specific apoptosis. In vivo PTD-DRBD delivery of EGFR and Akt2 siRNAs induced tumor specific apoptosis and significantly increased survival in intracerebral glioblastoma mouse models (P

Collaboration


Dive into the Miriam Scadeng's collaboration.

Top Co-Authors

Avatar

Ellen C. Breen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Marsala

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge