Miriam Schmidts
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miriam Schmidts.
Molecular and Cellular Biology | 2003
Tobias B. Huber; Björn Hartleben; Jeong Kim; Miriam Schmidts; Bernhard Schermer; Alexander Keil; Lotti Egger; Rachel L. Lecha; Christoph Borner; Hermann Pavenstädt; Andrey S. Shaw; Gerd Walz; Thomas Benzing
ABSTRACT Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes.
Nature Genetics | 2011
Anne-Christine Merveille; Erica E. Davis; Anita Becker-Heck; Marie Legendre; Israel Amirav; Géraldine Bataille; John W. Belmont; Nicole Beydon; Frédéric Billen; Annick Clement; Cécile Clercx; André Coste; Rachelle H. Crosbie; Jacques de Blic; S. Deleuze; Philippe Duquesnoy; Denise Escalier; Estelle Escudier; Manfred Fliegauf; Judith Horvath; Kent L. Hill; Mark Jorissen; Jocelyne Just; Andreas Kispert; Mark Lathrop; Niki T. Loges; June K. Marthin; Yukihide Momozawa; Guy Montantin; Kim G. Nielsen
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by recurrent infections of the upper and lower respiratory tract, reduced fertility in males and situs inversus in about 50% of affected individuals (Kartagener syndrome). It is caused by motility defects in the respiratory cilia that are responsible for airway clearance, the flagella that propel sperm cells and the nodal monocilia that determine left-right asymmetry. Recessive mutations that cause PCD have been identified in genes encoding components of the outer dynein arms, radial spokes and cytoplasmic pre-assembly factors of axonemal dyneins, but these mutations account for only about 50% of cases of PCD. We exploited the unique properties of dog populations to positionally clone a new PCD gene, CCDC39. We found that loss-of-function mutations in the human ortholog underlie a substantial fraction of PCD cases with axonemal disorganization and abnormal ciliary beating. Functional analyses indicated that CCDC39 localizes to ciliary axonemes and is essential for assembly of inner dynein arms and the dynein regulatory complex.
American Journal of Human Genetics | 2009
Niki T. Loges; Heike Olbrich; Anita Becker-Heck; Karsten Häffner; Angelina Heer; Christina Reinhard; Miriam Schmidts; Andreas Kispert; Maimoona A. Zariwala; Margaret W. Leigh; Hanswalter Zentgraf; Horst Seithe; Gudrun Nürnberg; Peter Nürnberg; Richard Reinhardt; Heymut Omran
Genetic defects affecting motility of cilia and flagella cause chronic destructive airway disease, randomization of left-right body asymmetry, and, frequently, male infertility in primary ciliary dyskinesia (PCD). The most frequent defects involve outer and inner dynein arms (ODAs and IDAs) that are large multiprotein complexes responsible for cilia-beat generation and regulation, respectively. Here, we demonstrate that large genomic deletions, as well as point mutations involving LRRC50, are responsible for a distinct PCD variant that is characterized by a combined defect involving assembly of the ODAs and IDAs. Functional analyses showed that LRRC50 deficiency disrupts assembly of distally and proximally DNAH5- and DNAI2-containing ODA complexes, as well as DNALI1-containing IDA complexes, resulting in immotile cilia. On the basis of these findings, we assume that LRRC50 plays a role in assembly of distinct dynein-arm complexes.
American Journal of Human Genetics | 2012
Heike Olbrich; Miriam Schmidts; Claudius Werner; Alexandros Onoufriadis; Niki T. Loges; Johanna Raidt; Nora F. Banki; Amelia Shoemark; Tom Burgoyne; Saeed Al Turki; Gabriele Köhler; Josef Schroeder; Gudrun Nürnberg; Peter Nürnberg; Eddie M. K. Chung; Richard Reinhardt; June K. Marthin; Kim G. Nielsen; Hannah M. Mitchison; Heymut Omran
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous recessive disorder characterized by defective cilia and flagella motility. Chronic destructive-airway disease is caused by abnormal respiratory-tract mucociliary clearance. Abnormal propulsion of sperm flagella contributes to male infertility. Genetic defects in most individuals affected by PCD cause randomization of left-right body asymmetry; approximately half show situs inversus or situs ambiguous. Almost 70 years after the hy3 mouse possessing Hydin mutations was described as a recessive hydrocephalus model, we report HYDIN mutations in PCD-affected persons without hydrocephalus. By homozygosity mapping, we identified a PCD-associated locus, chromosomal region 16q21-q23, which contains HYDIN. However, a nearly identical 360 kb paralogous segment (HYDIN2) in chromosomal region 1q21.1 complicated mutational analysis. In three affected German siblings linked to HYDIN, we identified homozygous c.3985G>T mutations that affect an evolutionary conserved splice acceptor site and that subsequently cause aberrantly spliced transcripts predicting premature protein termination in respiratory cells. Parallel whole-exome sequencing identified a homozygous nonsense HYDIN mutation, c.922A>T (p.Lys307(∗)), in six individuals from three Faroe Island PCD-affected families that all carried an 8.8 Mb shared haplotype across HYDIN, indicating an ancestral founder mutation in this isolated population. We demonstrate by electron microscopy tomography that, consistent with the effects of loss-of-function mutations, HYDIN mutant respiratory cilia lack the C2b projection of the central pair (CP) apparatus; similar findings were reported in Hydin-deficient Chlamydomonas and mice. High-speed videomicroscopy demonstrated markedly reduced beating amplitudes of respiratory cilia and stiff sperm flagella. Like the hy3 mouse model, all nine PCD-affected persons had normal body composition because nodal cilia function is apparently not dependent on the function of the CP apparatus.
web science | 2012
Hannah M. Mitchison; Miriam Schmidts; Niki T. Loges; Judy Freshour; Athina Dritsoula; Robert A. Hirst; Christopher J. O'Callaghan; Hannah Blau; Maha Al Dabbagh; Heike Olbrich; Philip L. Beales; Toshiki Yagi; Huda Mussaffi; Eddie M. K. Chung; Heymut Omran; David R. Mitchell
Primary ciliary dyskinesia most often arises from loss of the dynein motors that power ciliary beating. Here we show that DNAAF3 (also known as PF22), a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes before their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in individuals from families with situs inversus and defects in the assembly of inner and outer dynein arms. Knockdown of dnaaf3 in zebrafish likewise disrupts dynein arm assembly and ciliary motility, causing primary ciliary dyskinesia phenotypes that include hydrocephalus and laterality malformations. Chlamydomonas reinhardtii PF22 is exclusively cytoplasmic, and a PF22-null mutant cannot assemble any outer and some inner dynein arms. Altered abundance of dynein subunits in mutant cytoplasm suggests that DNAAF3 (PF22) acts at a similar stage as other preassembly proteins, for example, DNAAF2 (also known as PF13 or KTU) and DNAAF1 (also known as ODA7 or LRRC50), in the dynein preassembly pathway. These results support the existence of a conserved, multistep pathway for the cytoplasmic formation of assembly competent ciliary dynein complexes.
Nature Genetics | 2012
Jennifer R. Panizzi; Anita Becker-Heck; Victoria H. Castleman; Dalal A Al-Mutairi; Yan Liu; Niki T. Loges; Narendra Pathak; Christina Austin-Tse; Eamonn Sheridan; Miriam Schmidts; Heike Olbrich; Claudius Werner; Karsten Häffner; Nathan Hellman; Rahul Chodhari; Amar Gupta; Albrecht Kramer-Zucker; Felix Olale; Rebecca D. Burdine; Alexander F. Schier; Christopher J. O'Callaghan; Eddie M. K. Chung; Richard Reinhardt; Hannah M. Mitchison; Stephen M. King; Heymut Omran; Iain A. Drummond
Cilia are essential for fertilization, respiratory clearance, cerebrospinal fluid circulation and establishing laterality. Cilia motility defects cause primary ciliary dyskinesia (PCD, MIM244400), a disorder affecting 1:15,000–30,000 births. Cilia motility requires the assembly of multisubunit dynein arms that drive ciliary bending. Despite progress in understanding the genetic basis of PCD, mutations remain to be identified for several PCD-linked loci. Here we show that the zebrafish cilia paralysis mutant schmalhans (smhtn222) encodes the coiled-coil domain containing 103 protein (Ccdc103), a foxj1a-regulated gene product. Screening 146 unrelated PCD families identified individuals in six families with reduced outer dynein arms who carried mutations in CCDC103. Dynein arm assembly in smh mutant zebrafish was rescued by wild-type but not mutant human CCDC103. Chlamydomonas Ccdc103/Pr46b functions as a tightly bound, axoneme-associated protein. These results identify Ccdc103 as a dynein arm attachment factor that causes primary ciliary dyskinesia when mutated.
Nature Genetics | 2013
Aarti Tarkar; Niki T. Loges; Christopher E. Slagle; Richard Francis; Gerard W. Dougherty; Joel V. Tamayo; Brett A. Shook; Marie E. Cantino; D. A. Schwartz; Charlotte Jahnke; Heike Olbrich; Claudius Werner; Johanna Raidt; Petra Pennekamp; Marouan Abouhamed; Rim Hjeij; Gabriele Köhler; Matthias Griese; You Li; Kristi Lemke; Nikolas Klena; Xiaoqin Liu; George C. Gabriel; Kimimasa Tobita; Martine Jaspers; Lucy Morgan; Adam J. Shapiro; Stef J.F. Letteboer; Dorus A. Mans; Johnny L. Carson
DYX1C1 has been associated with dyslexia and neuronal migration in the developing neocortex. Unexpectedly, we found that deleting exons 2–4 of Dyx1c1 in mice caused a phenotype resembling primary ciliary dyskinesia (PCD), a disorder characterized by chronic airway disease, laterality defects and male infertility. This phenotype was confirmed independently in mice with a Dyx1c1 c.T2A start-codon mutation recovered from an N-ethyl-N-nitrosourea (ENU) mutagenesis screen. Morpholinos targeting dyx1c1 in zebrafish also caused laterality and ciliary motility defects. In humans, we identified recessive loss-of-function DYX1C1 mutations in 12 individuals with PCD. Ultrastructural and immunofluorescence analyses of DYX1C1-mutant motile cilia in mice and humans showed disruptions of outer and inner dynein arms (ODAs and IDAs, respectively). DYX1C1 localizes to the cytoplasm of respiratory epithelial cells, its interactome is enriched for molecular chaperones, and it interacts with the cytoplasmic ODA and IDA assembly factor DNAAF2 (KTU). Thus, we propose that DYX1C1 is a newly identified dynein axonemal assembly factor (DNAAF4).
American Journal of Human Genetics | 2013
Jan Halbritter; Albane A. Bizet; Miriam Schmidts; Jonathan D. Porath; Daniela A. Braun; Heon Yung Gee; Aideen McInerney-Leo; Pauline Krug; Emilie Filhol; Erica E. Davis; Rannar Airik; Peter G. Czarnecki; Anna Lehman; Peter Trnka; Patrick Nitschke; Christine Bole-Feysot; Markus Schueler; Bertrand Knebelmann; Stéphane Burtey; Attila J. Szabó; Kalman Tory; Paul Leo; Brooke Gardiner; Fiona McKenzie; Andreas Zankl; Matthew A. Brown; Jane Hartley; Eamonn R. Maher; Chunmei Li; Michel R. Leroux
Intraflagellar transport (IFT) depends on two evolutionarily conserved modules, subcomplexes A (IFT-A) and B (IFT-B), to drive ciliary assembly and maintenance. All six IFT-A components and their motor protein, DYNC2H1, have been linked to human skeletal ciliopathies, including asphyxiating thoracic dystrophy (ATD; also known as Jeune syndrome), Sensenbrenner syndrome, and Mainzer-Saldino syndrome (MZSDS). Conversely, the 14 subunits in the IFT-B module, with the exception of IFT80, have unknown roles in human disease. To identify additional IFT-B components defective in ciliopathies, we independently performed different mutation analyses: candidate-based sequencing of all IFT-B-encoding genes in 1,467 individuals with a nephronophthisis-related ciliopathy or whole-exome resequencing in 63 individuals with ATD. We thereby detected biallelic mutations in the IFT-B-encoding gene IFT172 in 12 families. All affected individuals displayed abnormalities of the thorax and/or long bones, as well as renal, hepatic, or retinal involvement, consistent with the diagnosis of ATD or MZSDS. Additionally, cerebellar aplasia or hypoplasia characteristic of Joubert syndrome was present in 2 out of 12 families. Fibroblasts from affected individuals showed disturbed ciliary composition, suggesting alteration of ciliary transport and signaling. Knockdown of ift172 in zebrafish recapitulated the human phenotype and demonstrated a genetic interaction between ift172 and ift80. In summary, we have identified defects in IFT172 as a cause of complex ATD and MZSDS. Our findings link the group of skeletal ciliopathies to an additional IFT-B component, IFT172, similar to what has been shown for IFT-A.
Thorax | 2012
Margaret W. Leigh; Johnny L. Carson; Stephanie D. Davis; Sharon D. Dell; Thomas W. Ferkol; Kenneth N. Olivier; Scott D. Sagel; Margaret Rosenfeld; Kimberlie A. Burns; Susan L. Minnix; Michael C. Armstrong; Adriana Lori; Milan J. Hazucha; Niki T. Loges; Heike Olbrich; Anita Becker-Heck; Miriam Schmidts; Claudius Werner; Heymut Omran; Maimoona A. Zariwala
Rationale Primary ciliary dyskinesia (PCD) is an autosomal recessive, genetically heterogeneous disorder characterised by oto-sino-pulmonary disease and situs abnormalities (Kartagener syndrome) due to abnormal structure and/or function of cilia. Most patients currently recognised to have PCD have ultrastructural defects of cilia; however, some patients have clinical manifestations of PCD and low levels of nasal nitric oxide, but normal ultrastructure, including a few patients with biallelic mutations in dynein axonemal heavy chain 11 (DNAH11). Objectives To test further for mutant DNAH11 as a cause of PCD, DNAH11 was sequenced in patients with a PCD clinical phenotype, but no known genetic aetiology. Methods 82 exons and intron/exon junctions in DNAH11 were sequenced in 163 unrelated patients with a clinical phenotype of PCD, including those with normal ciliary ultrastructure (n=58), defects in outer and/or inner dynein arms (n=76), radial spoke/central pair defects (n=6), and 23 without definitive ultrastructural results, but who had situs inversus (n=17), or bronchiectasis and/or low nasal nitric oxide (n=6). Additionally, DNAH11 was sequenced in 13 subjects with isolated situs abnormalities to see if mutant DNAH11 could cause situs defects without respiratory disease. Results Of the 58 unrelated patients with PCD with normal ultrastructure, 13 (22%) had two (biallelic) mutations in DNAH11; and two patients without ultrastructural analysis had biallelic mutations. All mutations were novel and private. None of the patients with dynein arm or radial spoke/central pair defects, or isolated situs abnormalities, had mutations in DNAH11. Of the 35 identified mutant alleles, 24 (69%) were nonsense, insertion/deletion or loss-of-function splice-site mutations. Conclusions Mutations in DNAH11 are a common cause of PCD in patients without ciliary ultrastructural defects; thus, genetic analysis can be used to ascertain the diagnosis of PCD in this challenging group of patients.
American Journal of Human Genetics | 2013
Daniel J. Moore; Alexandros Onoufriadis; Amelia Shoemark; Michael A. Simpson; Petra I. zur Lage; Sandra C.P. De Castro; Lucia Bartoloni; Giuseppe Gallone; Stavroula Petridi; Wesley J. Woollard; Dinu Antony; Miriam Schmidts; Teresa Didonna; Periklis Makrythanasis; Jeremy Bevillard; Nigel P. Mongan; Jana Djakow; Gerard Pals; Jane S. Lucas; June K. Marthin; Kim G. Nielsen; Federico Santoni; Michel Guipponi; Claire Hogg; Richard D. Emes; Eddie M. K. Chung; Nicholas D.E. Greene; Jean Louis Blouin; Andrew P. Jarman; Hannah M. Mitchison
Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T>G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T>G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects.