Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirjam H.M. Heemskerk is active.

Publication


Featured researches published by Mirjam H.M. Heemskerk.


Experimental Hematology | 2002

Mesenchymal stem cells promote engraftment of human umbilical cord blood–derived CD34+ cells in NOD/SCID mice

Willy A. Noort; Alwine B. Kruisselbrink; Pieternella S. in't Anker; Marjolein Kruger; Rutger L. van Bezooijen; Roelf A de Paus; Mirjam H.M. Heemskerk; Clemens W.G.M. Löwik; J.H. Frederik Falkenburg; R. Willemze; Willem E. Fibbe

OBJECTIVE Mesenchymal stem cells (MSC) have been implicated as playing an important role in hematopoietic stem cell engraftment. We identified and characterized a new population of MSC derived from human fetal lung. In cotransplantation experiments, we examined the homing of MSC as well as the effect on engraftment of human umbilical cord blood (UCB)-derived CD34(+) cells in NOD/SCID mice. MATERIALS AND METHODS Culture-expanded fetal lung-derived CD34(+) cells were characterized by immune phenotyping and cultured under conditions promoting differentiation to osteoblasts or adipocytes. Irradiated (3.5 Gy) NOD/SCID mice (n = 51) were transplanted intravenously with 0.03 to 1.0 x 10(6) UCB CD34(+) cells in the presence or absence of 1 x 10(6) culture-expanded fetal lung-derived MSC, irradiated CD34(-) cells, B cells, or with cultured MSC only. RESULTS Culture-expanded fetal lung CD34(+) cells were identified as MSC based on phenotype (CD105(+), SH3(+), SH4(+), CD160(+)) and their multilineage potential. Cotransplantation of low doses of UCB CD34(+) cells and MSC resulted in a three-fold to four-fold increase in bone marrow engraftment after 6 weeks, whereas no such effect was observed after cotransplantation of irradiated CD34(-) or B cells. Homing experiments indicated the presence of MSC in the lung, but not in the bone marrow, of NOD/SCID mice. CONCLUSIONS We identified a population of MSC derived from human fetal lung. Upon cotransplantation, MSC, but not irradiated CD34(-) or B cells, promote engraftment of UCB CD34(+) cells in bone marrow, spleen, and blood by mechanisms that may not require homing of MSC to the bone marrow.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia

W. A. Erik Marijt; Mirjam H.M. Heemskerk; Freke M. Kloosterboer; Els Goulmy; Michel G.D. Kester; Menno A.W.G. van der Hoorn; Simone A. P. van Luxemburg-Heys; Manja Hoogeboom; Tuna Mutis; Jan W. Drijfhout; Jon J. van Rood; R. Willemze; J.H. Frederik Falkenburg

Donor lymphocyte infusion (DLI) into patients with a relapse of their leukemia or multiple myeloma after allogeneic stem cell transplantation (alloSCT) has been shown to be a successful treatment approach. The hematopoiesis-restricted minor histocompatibility antigens (mHAgs) HA-1 or HA-2 expressed on malignant cells of the recipient may serve as target antigens for alloreactive donor T cells. Recently we treated three mHAg HA-1- and/or HA-2-positive patients with a relapse of their disease after alloSCT with DLI from their mHAg HA-1- and/or HA-2-negative donors. Using HLA-A2/HA-1 and HA-2 peptide tetrameric complexes we showed the emergence of HA-1- and HA-2-specific CD8+ T cells in the blood of the recipients 5–7 weeks after DLI. The appearance of these tetramer-positive cells was followed immediately by a complete remission of the disease and restoration of 100% donor chimerism in each of the patients. Furthermore, cloned tetramer-positive T cells isolated during the clinical response specifically recognized HA-1 and HA-2 expressing malignant progenitor cells of the recipient and inhibited the growth of leukemic precursor cells in vitro. Thus, HA-1- and HA-2-specific cytotoxic T lymphocytes emerging in the blood of patients after DLI demonstrate graft-versus-leukemia or myeloma reactivity resulting in a durable remission. This finding implies that in vitro generated HA-1- and HA-2-specific cytotoxic T lymphocytes could be used as adoptive immunotherapy to treat hematological malignances relapsing after alloSCT.


Nature Methods | 2009

Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers.

Sine Reker Hadrup; Arnold H. Bakker; Chengyi J Shu; Rikke Andersen; Jerre van Veluw; Pleun Hombrink; Emilie Castermans; Per thor Straten; Christian U. Blank; John B. A. G. Haanen; Mirjam H.M. Heemskerk; Ton N. M. Schumacher

The use of fluorescently labeled major histocompatibility complex multimers has become an essential technique for analyzing disease- and therapy-induced T-cell immunity. Whereas classical major histocompatibility complex multimer analyses are well-suited for the detection of immune responses to a few epitopes, limitations on human-subject sample size preclude a comprehensive analysis of T-cell immunity. To address this issue, we developed a combinatorial encoding strategy that allows the parallel detection of a multitude of different T-cell populations in a single sample. Detection of T cells from peripheral blood by combinatorial encoding is as efficient as detection with conventionally labeled multimers but results in a substantially increased sensitivity and, most notably, allows comprehensive screens to be performed. We obtained proof of principle for the feasibility of large-scale screening of human material by analysis of human leukocyte antigen A3–restricted T-cell responses to known and potential melanoma-associated antigens in peripheral blood from individuals with melanoma.


Blood | 2010

Allo-HLA reactivity of virus-specific memory T-cells is common

Avital L. Amir; Lloyd D'Orsogna; Dave L. Roelen; Marleen M. van Loenen; Renate S. Hagedoorn; Renate de Boer; Menno A.W.G. van der Hoorn; Michel G.D. Kester; Ilias I.N. Doxiadis; J.H. Frederik Falkenburg; Frans H.J. Claas; Mirjam H.M. Heemskerk

Graft-versus-host disease and graft rejection are major complications of allogeneic HLA-mismatched stem cell transplantation or organ transplantation that are caused by alloreactive T cells. Because a range of acute viral infections have been linked to initiating these complications, we hypothesized that the cross-reactive potential of virus-specific memory T cells to allogeneic (allo) HLA molecules may be able to mediate these complications. To analyze the allo-HLA reactivity, T cells specific for Epstein-Barr virus, cytomegalovirus, varicella zoster virus, and influenza virus were tested against a panel of HLA-typed target cells, and target cells transduced with single HLA molecules. Eighty percent of T-cell lines and 45% of virus-specific T-cell clones were shown to cross-react against allo-HLA molecules. The cross-reactivity of the CD8 and CD4 T-cell clones was directed primarily against HLA class I and II, respectively. However, a restricted number of CD8 T cells exhibited cross-reactivity to HLA class II. T-cell receptor (TCR) gene transfer confirmed that allo-HLA reactivity and virus specificity were mediated via the same TCR. These results demonstrate that a substantial proportion of virus-specific T cells exert allo-HLA reactivity, which may have important clinical implications in transplantation settings as well as adoptive transfer of third-party virus-specific T cells.


Journal of Experimental Medicine | 2004

Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer.

Mirjam H.M. Heemskerk; Manja Hoogeboom; Renate S. Hagedoorn; Michel G.D. Kester; R. Willemze; J.H. Frederik Falkenburg

T cells directed against minor histocompatibility antigens (mHags) might be responsible for eradication of hematological malignancies after allogeneic stem cell transplantation. We investigated whether transfer of T cell receptors (TCRs) directed against mHags, exclusively expressed on hematopoietic cells, could redirect virus-specific T cells toward antileukemic reactivity, without the loss of their original specificity. Generation of T cells with dual specificity may lead to survival of these TCR-transferred T cells for prolonged periods of time in vivo due to transactivation of the endogenous TCR of the tumor-reactive T cells by the latent presence of viral antigens. Furthermore, TCR transfer into restricted T cell populations, which are nonself reactive, will minimize the risk of autoimmunity. We demonstrate that cytomegalovirus (CMV)-specific T cells can be efficiently reprogrammed into leukemia-reactive T cells by transfer of TCRs directed against the mHag HA-2. HA-2-TCR–transferred CMV-specific T cells derived from human histocompatibility leukocyte antigen (HLA)-A2+ or HLA-A2− individuals exerted potent antileukemic as well as CMV reactivity, without signs of anti–HLA-A2 alloreactivity. The dual specificity of these mHag-specific, TCR-redirected virus-specific T cells opens new possibilities for the treatment of hematological malignancies of HLA-A2+ HA-2–expressing patients transplanted with HLA-A2–matched or –mismatched donors.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Mixed T cell receptor dimers harbor potentially harmful neoreactivity

Marleen M. van Loenen; Renate de Boer; Avital L. Amir; Renate S. Hagedoorn; Gerdien L. Volbeda; Roelof Willemze; Johannes J. van Rood; J.H. Frederik Falkenburg; Mirjam H.M. Heemskerk

Adoptive transfer of T cell receptor (TCR)-transduced T cells may be an attractive strategy to target both hematological malignancies and solid tumors. By introducing a TCR, large numbers of T cells with defined antigen (Ag) specificity can be obtained. However, by introduction of a TCR, mixed TCR dimers can be formed. Besides the decrease in TCR expression of the introduced and endogenous TCR, these mixed TCR dimers could harbor potentially harmful specificities. In this study, we demonstrate that introduction of TCRs resulted in formation of neoreactive mixed TCR dimers, composed of the introduced TCR chains pairing with either the endogenous TCR α or β chain. Neoreactivities observed were HLA class I or class II restricted. Most neoreactive mixed TCR dimers were allo-HLA reactive; however, neoreactive mixed TCR dimers with autoreactive activity were also observed. We demonstrate that inclusion of an extra disulfide bond between the constant domains of the introduced TCR markedly reduced neoreactivity, whereas enhanced effectiveness of the introduced TCR was observed. In conclusion, TCR transfer results in the formation of neoreactive mixed TCR dimers with the potential to generate off-target effects, underlining the importance of searching for techniques to facilitate preferential pairing.


European Journal of Immunology | 2006

Designer T cells by T cell receptor replacement

Daniel Sommermeyer; Julia Neudorfer; Monika Weinhold; Matthias Leisegang; Boris Engels; Elfriede Noessner; Mirjam H.M. Heemskerk; Jehad Charo; Dolores J. Schendel; Thomas Blankenstein; Helga Bernhard; Wolfgang Uckert

T cell receptor (TCR) gene transfer is a convenient method to produce antigen‐specific T cells for adoptive therapy. However, the expression of two TCR in T cells could impair their function or cause unwanted effects by mixed TCR heterodimers. With five different TCR and four different T cells, either mouse or human, we show that some TCR are strong – in terms of cell surface expression – and replace weak TCR on the cell surface, resulting in exchange of antigen specificity. Two strong TCR are co‐expressed. A mouse TCR replaces human TCR on human T cells. Even though it is still poorly understood why some TCRα/β combinations are preferentially expressed on T cells, our data suggest that, in the future, designer T cells with exclusive tumor reactivity can be generated by T cell engineering.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Dual HLA class I and class II restricted recognition of alloreactive T lymphocytes mediated by a single T cell receptor complex

Mirjam H.M. Heemskerk; Roelof A. de Paus; Ellie Lurvink; Frits Koning; Arend Mulder; R. Willemze; Jon J. van Rood; J.H. Frederik Falkenburg

The alloreactive human T cell clone MBM15 was found to exhibit dual specificity recognizing both an antigen in the context of the HLA class I A2 molecule and an antigen in the context of the HLA class II DR1. We demonstrated that the dual reactivity that was mediated via a single clonal T cell population depended on specific peptide binding. For complete recognition of the HLA-A2-restricted specificity the interaction of CD8 with HLA class I is essential. Interestingly, interaction of the CD8 molecule with HLA class I contributed to the HLA-DR1-restricted specificity. T cell clone MBM15 expressed two in-frame T cell receptor (TCR) Vα transcripts (Vα1 and Vα2) and one TCR Vβ transcript (Vβ13). To elucidate whether two TCR complexes were responsible for the dual recognition or one complex, cytotoxic T cells were transduced with retroviral vectors encoding the different TCR chains. Only T cells transduced with the TCR Vα1Vβ13 combination specifically recognized both the HLA-A2+ and HLA-DR1+ target cells, whereas the Vα2Vβ13 combination did not result in a TCR on the cell surface. Thus a single TCRαβ complex can have dual specificity, recognizing both a peptide in the context of HLA class I as well as a peptide in the context of HLA class II. Transactivation of T cells by an unrelated antigen in the context of HLA class II may evoke an HLA class I-specific T cell response. We propose that this finding may have major implications for immunotherapeutic interventions and insight into the development of autoimmune diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Conditional MHC class I ligands and peptide exchange technology for the human MHC gene products HLA-A1, -A3, -A11, and -B7

Arnold H. Bakker; Rieuwert Hoppes; Carsten Linnemann; Mireille Toebes; Boris Rodenko; Celia R. Berkers; Sine Reker Hadrup; Wim J. E. van Esch; Mirjam H.M. Heemskerk; Huib Ovaa; Ton N. M. Schumacher

Major histocompatibility complex (MHC) class I multimer technology has become an indispensable immunological assay system to dissect antigen-specific cytotoxic CD8+ T cell responses by flow cytometry. However, the development of high-throughput assay systems, in which T cell responses against a multitude of epitopes are analyzed, has been precluded by the fact that for each T cell epitope, a separate in vitro MHC refolding reaction is required. We have recently demonstrated that conditional ligands that disintegrate upon exposure to long-wavelength UV light can be designed for the human MHC molecule HLA-A2. To determine whether this peptide-exchange technology can be developed into a generally applicable approach for high throughput MHC based applications we set out to design conditional ligands for the human MHC gene products HLA-A1, -A3, -A11, and -B7. Here, we describe the development and characterization of conditional ligands for this set of human MHC molecules and apply the peptide-exchange technology to identify melanoma-associated peptides that bind to HLA-A3 with high affinity. The conditional ligand technology developed here will allow high-throughput MHC-based analysis of cytotoxic T cell immunity in the vast majority of Western European individuals.


Nature Medicine | 2013

High-throughput identification of antigen-specific TCRs by TCR gene capture

Carsten Linnemann; Bianca Heemskerk; Pia Kvistborg; Roelof Jc Kluin; Dmitriy A. Bolotin; Xiaojing Chen; Kaspar Bresser; Marja Nieuwland; Remko Schotte; Samira Michels; Lorenz Jahn; Pleun Hombrink; Nicolas Legrand; Chengyi Jenny Shu; Ilgar Z. Mamedov; Arno Velds; Christian U. Blank; John B. A. G. Haanen; Maria A. Turchaninova; Ron M. Kerkhoven; Hergen Spits; Sine Reker Hadrup; Mirjam H.M. Heemskerk; Thomas Blankenstein; Dmitriy M. Chudakov; Gavin M. Bendle; Ton N. M. Schumacher

The transfer of T cell receptor (TCR) genes into patient T cells is a promising approach for the treatment of both viral infections and cancer. Although efficient methods exist to identify antibodies for the treatment of these diseases, comparable strategies to identify TCRs have been lacking. We have developed a high-throughput DNA-based strategy to identify TCR sequences by the capture and sequencing of genomic DNA fragments encoding the TCR genes. We establish the value of this approach by assembling a large library of cancer germline tumor antigen–reactive TCRs. Furthermore, by exploiting the quantitative nature of TCR gene capture, we show the feasibility of identifying antigen-specific TCRs in oligoclonal T cell populations from either human material or TCR-humanized mice. Finally, we demonstrate the ability to identify tumor-reactive TCRs within intratumoral T cell subsets without knowledge of antigen specificities, which may be the first step toward the development of autologous TCR gene therapy to target patient-specific neoantigens in human cancer.

Collaboration


Dive into the Mirjam H.M. Heemskerk's collaboration.

Top Co-Authors

Avatar

J.H. Frederik Falkenburg

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Renate S. Hagedoorn

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michel G.D. Kester

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

R. Willemze

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dirk M. van der Steen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marleen M. van Loenen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pleun Hombrink

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marieke Griffioen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter A. van Veelen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Renate de Boer

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge