Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirjam van der Burg is active.

Publication


Featured researches published by Mirjam van der Burg.


Nature | 2014

Targeted genome editing in human repopulating haematopoietic stem cells

Pietro Genovese; Giulia Schiroli; Giulia Escobar; Tiziano Di Tomaso; Claudia Firrito; Andrea Calabria; Davide Moi; Roberta Mazzieri; Chiara Bonini; Michael C. Holmes; Philip D. Gregory; Mirjam van der Burg; Bernhard Gentner; Eugenio Montini; Angelo Lombardo; Luigi Naldini

Targeted genome editing by artificial nucleases has brought the goal of site-specific transgene integration and gene correction within the reach of gene therapy. However, its application to long-term repopulating haematopoietic stem cells (HSCs) has remained elusive. Here we show that poor permissiveness to gene transfer and limited proficiency of the homology-directed DNA repair pathway constrain gene targeting in human HSCs. By tailoring delivery platforms and culture conditions we overcame these barriers and provide stringent evidence of targeted integration in human HSCs by long-term multilineage repopulation of transplanted mice. We demonstrate the therapeutic potential of our strategy by targeting a corrective complementary DNA into the IL2RG gene of HSCs from healthy donors and a subject with X-linked severe combined immunodeficiency (SCID-X1). Gene-edited HSCs sustained normal haematopoiesis and gave rise to functional lymphoid cells that possess a selective growth advantage over those carrying disruptive IL2RG mutations. These results open up new avenues for treating SCID-X1 and other diseases.


Journal of Clinical Investigation | 2010

CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency.

Menno C. van Zelm; Julie Smet; Brigitte Adams; Françoise Mascart; Liliane Schandené; Françoise Janssen; Alina Ferster; Chiung-Chi Kuo; Shoshana Levy; Jacques J.M. van Dongen; Mirjam van der Burg

Antibody deficiencies constitute the largest group of symptomatic primary immunodeficiency diseases. In several patients, mutations in CD19 have been found to underlie disease, demonstrating the critical role for the protein encoded by this gene in antibody responses; CD19 functions in a complex with CD21, CD81, and CD225 to signal with the B cell receptor upon antigen recognition. We report here a patient with severe nephropathy and profound hypogammaglobulinemia. The immunodeficiency was characterized by decreased memory B cell numbers, impaired specific antibody responses, and an absence of CD19 expression on B cells. The patient had normal CD19 alleles but carried a homozygous CD81 mutation resulting in a complete lack of CD81 expression on blood leukocytes. Retroviral transduction and glycosylation experiments on EBV-transformed B cells from the patient revealed that CD19 membrane expression critically depended on CD81. Similar to CD19-deficient patients, CD81-deficient patients had B cells that showed impaired activation upon stimulation via the B cell antigen receptor but no overt T cell subset or function defects. In this study, we present what we believe to be the first antibody deficiency syndrome caused by a mutation in the CD81 gene and consequent disruption of the CD19 complex on B cells. These findings may contribute to unraveling the genetic basis of antibody deficiency syndromes and the nonredundant functions of CD81 in humans.


Blood | 2011

Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways

Magdalena Berkowska; Gertjan J. Driessen; Vasilis Bikos; Christina Grosserichter-Wagener; Kostas Stamatopoulos; Andrea Cerutti; Bing He; Katharina Biermann; Johan F. Lange; Mirjam van der Burg; Jacques J.M. van Dongen; Menno C. van Zelm

Multiple distinct memory B-cell subsets have been identified in humans, but it remains unclear how their phenotypic diversity corresponds to the type of responses from which they originate. Especially, the contribution of germinal center-independent responses in humans remains controversial. We defined 6 memory B-cell subsets based on their antigen-experienced phenotype and differential expression of CD27 and IgH isotypes. Molecular characterization of their replication history, Ig somatic hypermutation, and class-switch profiles demonstrated their origin from 3 different pathways. CD27⁻IgG⁺ and CD27⁺IgM⁺ B cells are derived from primary germinal center reactions, and CD27⁺IgA⁺ and CD27⁺IgG⁺ B cells are from consecutive germinal center responses (pathway 1). In contrast, natural effector and CD27⁻IgA⁺ memory B cells have limited proliferation and are also present in CD40L-deficient patients, reflecting a germinal center-independent origin. Natural effector cells at least in part originate from systemic responses in the splenic marginal zone (pathway 2). CD27⁻IgA⁺ cells share low replication history and dominant Igλ and IgA2 use with gut lamina propria IgA+ B cells, suggesting their common origin from local germinal center-independent responses (pathway 3). Our findings shed light on human germinal center-dependent and -independent B-cell memory formation and provide new opportunities to study these processes in immunologic diseases.


Journal of Experimental Medicine | 2011

The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency

Venetia Bigley; Muzlifah Haniffa; Sergei Doulatov; Xiao-Nong Wang; Rachel Dickinson; Naomi McGovern; Laura Jardine; Sarah Pagan; Ian Dimmick; Ignatius Chua; Jonathan Wallis; James Lordan; Cliff Morgan; Dinakantha Kumararatne; Rainer Doffinger; Mirjam van der Burg; Jacques J.M. van Dongen; Andrew J. Cant; John E. Dick; Sophie Hambleton; Matthew Collin

Human immunodeficiency syndrome with loss of DCs, monocytes, and T reg cells; preservation of Langerhans cells; associated loss of BM multilymphoid progenitors; and overproduction of Flt3 ligand.


Journal of Clinical Investigation | 2008

A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining

Mirjam van der Burg; Hanna IJspeert; Nicole S. Verkaik; Tuba Turul; Wouter W. Wiegant; Keiko Morotomi-Yano; Pierre Olivier Mari; Ilhan Tezcan; David J. Chen; Małgorzata Z. Zdzienicka; Jacques J.M. van Dongen; Dik C. van Gent

Radiosensitive T-B- severe combined immunodeficiency (RS-SCID) is caused by defects in the nonhomologous end-joining (NHEJ) DNA repair pathway, which results in failure of functional V(D)J recombination. Here we have identified the first human RS-SCID patient to our knowledge with a DNA-PKcs missense mutation (L3062R). The causative mutation did not affect the kinase activity or DNA end-binding capacity of DNA-PKcs itself; rather, the presence of long P-nucleotide stretches in the immunoglobulin coding joints indicated that it caused insufficient Artemis activation, something that is dependent on Artemis interaction with autophosphorylated DNA-PKcs. Moreover, overall end-joining activity was hampered, suggesting that Artemis-independent DNA-PKcs functions were also inhibited. This study demonstrates that the presence of DNA-PKcs kinase activity is not sufficient to rule out a defect in this gene during diagnosis and treatment of RS-SCID patients. Further, the data suggest that residual DNA-PKcs activity is indispensable in humans.


Journal of Experimental Medicine | 2007

Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion

Menno C. van Zelm; Tomasz Szczepański; Mirjam van der Burg; Jacques J.M. van Dongen

The contribution of proliferation to B lymphocyte homeostasis and antigen responses is largely unknown. We quantified the replication history of mouse and human B lymphocyte subsets by calculating the ratio between genomic coding joints and signal joints on kappa-deleting recombination excision circles (KREC) of the IGK-deleting rearrangement. This approach was validated with in vitro proliferation studies. We demonstrate that naive mature B lymphocytes, but not transitional B lymphocytes, undergo in vivo homeostatic proliferation in the absence of somatic mutations in the periphery. T cell–dependent B cell proliferation was substantially higher and showed higher frequencies of somatic hypermutation than T cell–independent responses, fitting with the robustness and high affinity of T cell–dependent antibody responses. More extensive proliferation and somatic hypermutation in antigen-experienced B lymphocytes from human adults compared to children indicated consecutive responses upon additional antigen exposures. Our combined observations unravel the contribution of proliferation to both B lymphocyte homeostasis and antigen-induced B cell expansion. We propose an important role for both processes in humoral immunity. These new insights will support the understanding of peripheral B cell regeneration after hematopoietic stem cell transplantation or B cell–directed antibody therapy, and the identification of defects in homeostatic or antigen-induced B cell proliferation in patients with common variable immunodeficiency or another antibody deficiency.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells.

Mirzokhid Rakhmanov; Baerbel Keller; Sylvia Gutenberger; Christian Foerster; Manfred Hoenig; Gertjan J. Driessen; Mirjam van der Burg; Jacques J.M. van Dongen; Elisabeth Wiech; Marcella Visentini; Isabella Quinti; Antje Prasse; Nadine Voelxen; Ulrich Salzer; Sigune Goldacker; Paul Fisch; Hermann Eibel; Klaus Schwarz; Hans-Hartmut Peter; Klaus Warnatz

The homeostasis of circulating B cell subsets in the peripheral blood of healthy adults is well regulated, but in disease it can be severely disturbed. Thus, a subgroup of patients with common variable immunodeficiency (CVID) presents with an extraordinary expansion of an unusual B cell population characterized by the low expression of CD21. CD21low B cells are polyclonal, unmutated IgM+IgD+ B cells but carry a highly distinct gene expression profile which differs from conventional naïve B cells. Interestingly, while clearly not representing a memory population, they do share several features with the recently defined memory-like tissue, Fc receptor-like 4 positive B cell population in the tonsils of healthy donors. CD21low B cells show signs of previous activation and proliferation in vivo, while exhibiting defective calcium signaling and poor proliferation in response to B cell receptor stimulation. CD21low B cells express decreased amounts of homeostatic but increased levels of inflammatory chemokine receptors. This might explain their preferential homing to peripheral tissues like the bronchoalveolar space of CVID or the synovium of rheumatoid arthritis patients. Therefore, as a result of the close resemblance to the gene expression profile, phenotype, function and preferential tissue homing of murine B1 B cells, we suggest that CD21low B cells represent a human innate-like B cell population.


Journal of Clinical Investigation | 2005

A new type of radiosensitive T–B–NK+ severe combined immunodeficiency caused by a LIG4 mutation

Mirjam van der Burg; Lieneke R. van Veelen; Nicole S. Verkaik; Wouter W. Wiegant; Nico G. Hartwig; Barbara H. Barendregt; Linda Brugmans; Anja Raams; Nicolaas G. J. Jaspers; Małgorzata Z. Zdzienicka; Jacques J.M. van Dongen; Dik C. van Gent

V(D)J recombination of Ig and TCR loci is a stepwise process during which site-specific DNA double-strand breaks (DSBs) are made by RAG1/RAG2, followed by DSB repair by nonhomologous end joining. Defects in V(D)J recombination result in SCID characterized by absence of mature B and T cells. A subset of T-B-NK+ SCID patients is sensitive to ionizing radiation, and the majority of these patients have mutations in Artemis. We present a patient with a new type of radiosensitive T-B-NK+ SCID with a defect in DNA ligase IV (LIG4). To date, LIG4 mutations have only been described in a radiosensitive leukemia patient and in 4 patients with a designated LIG4 syndrome, which is associated with chromosomal instability, pancytopenia, and developmental and growth delay. The patient described here shows that a LIG4 mutation can also cause T-B-NK+ SCID without developmental defects. The LIG4-deficient SCID patient had an incomplete but severe block in precursor B cell differentiation, resulting in extremely low levels of blood B cells. The residual D(H)-J(H) junctions showed extensive nucleotide deletions, apparently caused by prolonged exonuclease activity during the delayed D(H)-J(H) ligation process. In conclusion, different LIG4 mutations can result in either a developmental defect with minor immunological abnormalities or a SCID picture with normal development.


Journal of Immunology | 2005

Ig gene rearrangement steps are initiated in early human precursor B cell subsets and correlate with specific transcription factor expression

Menno C. van Zelm; Mirjam van der Burg; Dick de Ridder; Barbara H. Barendregt; Edwin F. E. de Haas; Marcel J. T. Reinders; Arjan C. Lankester; Tom Révész; Frank J. T. Staal; Jacques J.M. van Dongen

The role of specific transcription factors in the initiation and regulation of Ig gene rearrangements has been studied extensively in mouse models, but data on normal human precursor B cell differentiation are limited. We purified five human precursor B cell subsets, and assessed and quantified their IGH, IGK, and IGL gene rearrangement patterns and gene expression profiles. Pro-B cells already massively initiate DH-JH rearrangements, which are completed with VH-DJH rearrangements in pre-B-I cells. Large cycling pre-B-II cells are selected for in-frame IGH gene rearrangements. The first IGK/IGL gene rearrangements were initiated in pre-B-I cells, but their frequency increased enormously in small pre-B-II cells, and in-frame selection was found in immature B cells. Transcripts of the RAG1 and RAG2 genes and earlier defined transcription factors, such as E2A, early B cell factor, E2-2, PAX5, and IRF4, were specifically up-regulated at stages undergoing Ig gene rearrangements. Based on the combined Ig gene rearrangement status and gene expression profiles of consecutive precursor B cell subsets, we identified 16 candidate genes involved in initiation and/or regulation of Ig gene rearrangements. These analyses provide new insights into early human precursor B cell differentiation steps and represent an excellent template for studies on oncogenic transformation in precursor B acute lymphoblastic leukemia and B cell differentiation blocks in primary Ab deficiencies.


The Journal of Allergy and Clinical Immunology | 2014

Targeted next-generation sequencing: A novel diagnostic tool for primary immunodeficiencies

Isaac J. Nijman; Joris M. van Montfrans; Marlous Hoogstraat; Marianne Boes; Lisette van de Corput; Ellen D. Renner; Patrick van Zon; Stef van Lieshout; Martin Elferink; Mirjam van der Burg; Clementien L. Vermont; Bert van der Zwaag; Esther Janson; Edwin Cuppen; Johannes K. Ploos van Amstel; Marielle van Gijn

BACKGROUND Primary immunodeficiency (PID) disorders are a heterogeneous group of inherited disorders caused by a variety of monogenetic immune defects. Thus far, mutations in more than 170 different genes causing PIDs have been described. A clear genotype-phenotype correlation is often not available, which makes a genetic diagnosis in patients with PIDs complex and laborious. OBJECTIVE We sought to develop a robust, time-effective, and cost-effective diagnostic method to facilitate a genetic diagnosis in any of 170 known PID-related genes by using next-generation sequencing (NGS). METHODS We used both targeted array-based and in-solution enrichment combined with a SOLiD sequencing platform and a bioinformatic pipeline developed in house to analyze genetic changes in the DNA of 41 patients with PIDs with known mutations and 26 patients with undiagnosed PIDs. RESULTS This novel NGS-based method accurately detected point mutations (sensitivity and specificity >99% in covered regions) and exonic deletions (100% sensitivity and specificity). For the 170 genes of interest, the DNA coverage was greater than 20× in 90% to 95%. Nine PID-related genes proved not eligible for evaluation by using this NGS-based method because of inadequate coverage. The NGS method allowed us to make a genetic diagnosis in 4 of 26 patients who lacked a genetic diagnosis despite routine functional and genetic testing. Three of these patients proved to have an atypical presentation of previously described PIDs. CONCLUSION This novel NGS tool facilitates accurate simultaneous detection of mutations in 161 of 170 known PID-related genes. In addition, these analyses will generate more insight into genotype-phenotype correlations for the different PID disorders.

Collaboration


Dive into the Mirjam van der Burg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanna IJspeert

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Gertjan J. Driessen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Anton W. Langerak

Erasmus University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dik C. van Gent

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magdalena Berkowska

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge