Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirjana Rajilić-Stojanović is active.

Publication


Featured researches published by Mirjana Rajilić-Stojanović.


Gut | 2008

High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota.

E.G. Zoetendal; Mirjana Rajilić-Stojanović; W.M. de Vos

The human gastrointestinal (GI) tract microbiota plays a pivotal role in our health. For more than a decade a major input for describing the diversity of the GI tract microbiota has been derived from the application of small subunit ribosomal RNA (SSU rRNA)-based technologies. These not only provided a phylogenetic framework of the GI tract microbiota, the majority of which has not yet been cultured, but also advanced insights into the impact of host and environmental factors on the microbiota community structure and dynamics. In addition, it emerged that GI tract microbial communities are host and GI tract location-specific. This complicates establishing relevant links between the host’s health and the presence or abundance of specific microbial populations and argues for the implementation of novel high-throughput technologies in studying the diversity and functionality of the GI tract microbiota. Here, we focus on the recent developments and applications of phylogenetic microarrays based on SSU rRNA sequences and metagenomics approaches exploiting rapid sequencing technologies in unravelling the secrets of our GI tract microbiota.


Environmental Microbiology | 2009

Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults

Mirjana Rajilić-Stojanović; Hans G.H.J. Heilig; Douwe Molenaar; Kajsa Kajander; Anu Surakka; Hauke Smidt; Willem M. de Vos

In this paper we present the in silico assessment of the diversity of variable regions of the small subunit ribosomal RNA (SSU rRNA) gene based on an ecosystem-specific curated database, describe a probe design procedure based on two hypervariable regions with minimal redundancy and test the potential of such probe design strategy for the design of a flexible microarray platform. This resulted in the development and application of a phylogenetic microarray for studying the human gastrointestinal microbiota – referred as the human intestinal tract chip (HITChip). Over 4800 dedicated tiling oligonucleotide probes were designed based on two hypervariable regions of the SSU rRNA gene of 1140 unique microbial phylotypes (< 98% identity) following analysis of over 16 000 human intestinal SSU rRNA sequences. These HITChip probes were hybridized to a diverse set of human intestinal samples and SSU rRNA clones to validate its fingerprinting and quantification potential. Excellent reproducibility (median Pearsons correlation of 0.99) was obtained following hybridization with T7 polymerase transcripts generated in vitro from SSU rRNA gene amplicons. A linear dose–response was observed with artificial mixtures of 40 different representative amplicons with relative abundances as low as 0.1% of total microbiota. Analysis of three consecutively collected faecal samples from ten individuals (five young and five elderly adults) revealed temporal dynamics and confirmed that the adult intestinal microbiota is an individual-specific and relatively stable ecosystem. Further analysis of the stable part allowed for the identification of a universal microbiota core at the approximate genus level (90% sequence similarity). This core consists of members of Actinobacteria, Bacteroidetes and Firmicutes. Used as a phylogenetic fingerprinting tool with the possibility for relative quantification, the HITChip has the potential to bridge the gaps in our knowledge in the quantitative and qualitative description of the human gastrointestinal microbiota composition.


Journal of Microbiological Methods | 2010

Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: Effective recovery of bacterial and archaeal DNA using mechanical cell lysis

Anne Salonen; Janne Nikkilä; Jonna Jalanka-Tuovinen; Outi Immonen; Mirjana Rajilić-Stojanović; Riina A. Kekkonen; Airi Palva; Willem M. de Vos

Several different protocols are used for fecal DNA extraction, which is an integral step in all phylogenetic and metagenomic approaches to characterize the highly diverse intestinal ecosystem. We compared four widely used methods, and found their DNA yields to vary up to 35-fold. Bacterial, archaeal and human DNA was quantified by real-time PCR, and a compositional analysis of different extracts was carried out using the Human Intestinal Tract Chip, a 16S rRNA gene-based phylogenetic microarray. The overall microbiota composition was highly similar between the methods in contrast to the profound differences between the subjects (Pearson correlations >0.899 and 0.735, respectively). A detailed comparative analysis of mechanical and enzymatic methods showed that despite their overall similarity, the mechanical cell disruption by repeated bead beating showed the highest bacterial diversity and resulted in significantly improved DNA extraction efficiency of archaea and some bacteria, including Clostridium cluster IV. By applying the mechanical disruption method a high prevalence (67%) of methanogenic archaea was detected in healthy subjects (n=24), exceeding the typical values reported previously. The assessment of performance differences between different methodologies serves as a concrete step towards the comparison and reliable meta-analysis of the results obtained in different laboratories.


Fems Microbiology Reviews | 2014

The first 1000 cultured species of the human gastrointestinal microbiota

Mirjana Rajilić-Stojanović; Willem M. de Vos

The microorganisms that inhabit the human gastrointestinal tract comprise a complex ecosystem with functions that significantly contribute to our systemic metabolism and have an impact on health and disease. In line with its importance, the human gastrointestinal microbiota has been extensively studied. Despite the fact that a significant part of the intestinal microorganisms has not yet been cultured, presently over 1000 different microbial species that can reside in the human gastrointestinal tract have been identified. This review provides a systematic overview and detailed references of the total of 1057 intestinal species of Eukarya (92), Archaea (8) and Bacteria (957), based on the phylogenetic framework of their small subunit ribosomal RNA gene sequences. Moreover, it unifies knowledge about the prevalence, abundance, stability, physiology, genetics and the association with human health of these gastrointestinal microorganisms, which is currently scattered over a vast amount of literature published in the last 150 years. This detailed physiological and genetic information is expected to be instrumental in advancing our knowledge of the gastrointestinal microbiota. Moreover, it opens avenues for future comparative and functional metagenomic and other high-throughput approaches that need a systematic and physiological basis to have an impact.


Alimentary Pharmacology & Therapeutics | 2008

Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota

Kajsa Kajander; E. Myllyluoma; Mirjana Rajilić-Stojanović; Sinikka Kyrönpalo; Martin Rasmussen; Salme Järvenpää; Erwin G. Zoetendal; W.M. de Vos; Heikki Vapaatalo; Riitta Korpela

Background  Irritable bowel syndrome is the most common diagnosis in gastroenterology. Trials suggest certain probiotics to be beneficial.


Environmental Microbiology | 2010

High temporal and inter‐individual variation detected in the human ileal microbiota

Carien Cgm Booijink; Sahar El-Aidy; Mirjana Rajilić-Stojanović; Hans G.H.J. Heilig; Freddy J. Troost; Hauke Smidt; Michiel Kleerebezem; Willem M. de Vos; Erwin G. Zoetendal

The diversity and temporal stability of the predominant bacteria in the human ileum was studied with the use of ileal effluent samples of seven individuals with Brooke ileostomies. The total number of bacteria within the ileal effluent was in the range of 10⁷ -10⁸ bacteria per gram (wet weight). The diversity of the bacteria in the ileal effluent showed marked differences compared with that in faecal samples from age-matched healthy adults. The ileal effluent had a higher relative abundance of species within the orders Lactobacillales and Clostridiales, mainly Streptococcus bovis-related species, and the Veillonella group, and a lower proportion of species related to Ruminococcus gnavus, R. obeum and Bacteroides plebeius. In addition, inter-individual differences were found, indicative of a highly personal ileal microbiota profile. Furthermore, temporal profiles showed large fluctuations per individual over a period of 9-28 days (average similarity over a period of 9 days was as low as 44%), and differences between morning and afternoon profiles were observed. Parallel cloning and sequencing efforts revealed several phylotypes that were not identified in previous studies (12 out of 65 phylotypes showed less than 97% sequence similarity with previously reported sequences). Achaea were found to be below detection limit by quantitative PCR. Overall, the results indicate that the microbiota of the human ileum is relatively unstable, less complex and consisting of different dominating phylotypes when compared with the colonic microbiota.


Inflammatory Bowel Diseases | 2013

Phylogenetic analysis of dysbiosis in ulcerative colitis during remission.

Mirjana Rajilić-Stojanović; Fergus Shanahan; Francisco Guarner; Willem M. de Vos

Background:Presence of intestinal microbes is a prerequisite for the development of ulcerative colitis (UC), although deviation of the normal intestinal microbiota composition, dysbiosis, is presumably implicated in the etiology of UC. Methods:The fecal microbiota of 30 UC samples obtained from 15 patients who were sampled twice and from 15 healthy control subjects originating from 2 geographic locations was analyzed using highly reproducible phylogenetic microarray that has the capacity for detection and quantification of more than 1000 intestinal bacteria in a wide dynamic range. Results:The fecal microbiota composition is not significantly influenced by geographic location, age, or gender, but it differs significantly between the patients with UC and the control subjects (P = 0.0004). UC-associated microbiota is stable during remission and similar among all patients with UC. Significant reduction of bacterial diversity of members of the Clostridium cluster IV and significant reduction in the abundance of bacteria involved in butyrate and propionate metabolism, including Ruminococcus bromii et rel. Eubacterium rectale et rel., Roseburia sp., and Akkermansia sp. are markers of dysbiosis in UC. Increased abundance of (opportunistic) pathogens including Fusobacterium sp., Peptostreptococcus sp., Helicobacter sp., and Campylobacter sp. as well as Clostridium difficile were found to be associated with UC. Conclusions:Dysbiosis in UC is stable in time and shared between patients from different geographic locations. The microbial alterations offer a mechanistic insight into the pathogenesis of the disease.


Environmental Microbiology | 2013

Long‐term monitoring of the human intestinal microbiota composition

Mirjana Rajilić-Stojanović; Hans G.H.J. Heilig; Sebastian Tims; Erwin G. Zoetendal; Willem M. de Vos

The microbiota that colonizes the human intestinal tract is complex and its structure is specific for each of us. In this study we expand the knowledge about the stability of the subject-specific microbiota and show that this ecosystem is stable in short-term intervals (< 1 year) but also during long periods of time (> 10 years). The faecal microbiota composition of five unrelated and healthy subjects was analysed using a comprehensive and highly reproducible phylogenetic microarray, the HITChip. The results show that the use of antibiotics, application of specific dietary regimes and distant travelling have limited impact on the microbiota composition. Several anaerobic genera, including Bifidobacterium and a number of genera within the Bacteroidetes and the Firmicutes phylum, exhibit significantly higher similarity than the total microbiota. Although the gut microbiota contains subject-specific species, the presence of which is preserved throughout the years, their relative abundance changes considerably. Consequently, the recently proposed enterotype status appears to be a varying characteristic of the microbiota. Our data show that the intestinal microbiota contains a core community of permanent colonizers, and that environmentally introduced changes of the microbiota throughout adulthood are primarily affecting the abundance but not the presence of specific microbial species.


Environmental Microbiology | 2009

Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing

P.P. Kovatcheva-Datchary; Markus Egert; Annet Maathuis; Mirjana Rajilić-Stojanović; A.A. de Graaf; Hauke Smidt; W.M. de Vos; Koen Venema

Carbohydrates, including starches, are an important energy source for humans, and are known for their interactions with the microbiota in the digestive tract. Largely, those interactions are thought to promote human health. Using 16S ribosomal RNA (rRNA)-based stable isotope probing (SIP), we identified starch-fermenting bacteria under human colon-like conditions. To the microbiota of the TIM-2 in vitro model of the human colon 7.4 g l(-1) of [U-(13)C]-starch was added. RNA extracted from lumen samples after 0 (control), 2, 4 and 8 h was subjected to density-gradient ultracentrifugation. Terminal-restriction fragment length polymorphism (T-RFLP) fingerprinting and phylogenetic analyses of the labelled and unlabelled 16S rRNA suggested populations related to Ruminococcus bromii, Prevotella spp. and Eubacterium rectale to be involved in starch metabolism. Additionally, 16S rRNA related to that of Bifidobacterium adolescentis was abundant in all analysed fractions. While this might be due to the enrichment of high-GC RNA in high-density fractions, it could also indicate an active role in starch fermentation. Comparison of the T-RFLP fingerprints of experiments performed with labelled and unlabelled starch revealed Ruminococcus bromii as the primary degrader in starch fermentation in the studied model, as it was found to solely predominate in the labelled fractions. LC-MS analyses of the lumen and dialysate samples showed that, for both experiments, starch fermentation primarily yielded acetate, butyrate and propionate. Integration of molecular and metabolite data suggests metabolic cross-feeding in the system, where populations related to Ruminococcus bromii are the primary starch degrader, while those related to Prevotella spp., Bifidobacterium adolescentis and Eubacterium rectale might be further involved in the trophic chain.


The American Journal of Gastroenterology | 2015

Intestinal Microbiota And Diet in IBS: Causes, Consequences, or Epiphenomena?

Mirjana Rajilić-Stojanović; Daisy Jonkers; Anne Salonen; Kurt Hanevik; Jeroen Raes; Jonna Jalanka; Willem M. de Vos; Chaysavanh Manichanh; Natasa Golic; Paul Enck; Elena Philippou; Fuad A. Iraqi; Gerard Clarke; Robin C. Spiller; John Penders

Irritable bowel syndrome (IBS) is a heterogeneous functional disorder with a multifactorial etiology that involves the interplay of both host and environmental factors. Among environmental factors relevant for IBS etiology, the diet stands out given that the majority of IBS patients report their symptoms to be triggered by meals or specific foods. The diet provides substrates for microbial fermentation, and, as the composition of the intestinal microbiota is disturbed in IBS patients, the link between diet, microbiota composition, and microbial fermentation products might have an essential role in IBS etiology. In this review, we summarize current evidence regarding the impact of diet and the intestinal microbiota on IBS symptoms, as well as the reported interactions between diet and the microbiota composition. On the basis of the existing data, we suggest pathways (mechanisms) by which diet components, via the microbial fermentation, could trigger IBS symptoms. Finally, this review provides recommendations for future studies that would enable elucidation of the role of diet and microbiota and how these factors may be (inter)related in the pathophysiology of IBS.

Collaboration


Dive into the Mirjana Rajilić-Stojanović's collaboration.

Top Co-Authors

Avatar

Willem M. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W.M. de Vos

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Erwin G. Zoetendal

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hans G.H.J. Heilig

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hauke Smidt

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge