Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirko Mehner is active.

Publication


Featured researches published by Mirko Mehner.


Optics Express | 2009

Simultaneous dual-band optical coherence tomography in the spectral domain for high resolution in vivo imaging

Peter Cimalla; Julia Walther; Mirko Mehner; Maximiliano Cuevas; Edmund Koch

Optical coherence tomography (OCT) in the spectral domain is demonstrated simultaneously at two wavelength bands centered at 800 nm and 1250 nm. A novel commercial supercontinuum laser is applied as a single low coherence broadband light source. The emission spectrum of the source is shaped by optical and spatial filtering in order to achieve an adequate double peak spectrum containing the wavelength bands 700 - 900 nm and 1100 - 1400 nm for dual-band OCT imaging and thus reducing the radiation exposure of the sample. Each wavelength band is analyzed with an individual spectrometer at an A-scan rate of about 12 kHz which enables real-time imaging for the examination of moving samples. A common path optical setup optimized for both spectral regions with a separate single fiber-based scanning unit was realized which facilitates flexible handling and easy access to the measurement area. The free-space axial resolutions were measured to be less than 4.5 microm and 7 microm at 800 nm and 1250 nm, respectively. Three-dimensional imaging ten times faster than previously reported with a signal-to-noise-ratio of above 90 dB is achieved simultaneously in both wavelength bands. Spectral domain dual-band OCT combines real-time imaging with high resolution at 800 nm and enhanced penetration depth at 1250 nm and therefore provides a well suited tool for in vivo vasodynamic measurements. Further, spatially resolved spectral features of the sample are obtained by means of comparing the backscattering properties at two different wavelength bands. The ability of dual-band OCT to enhance tissue contrast and the sensitivity of this imaging modality to wavelength-dependent sample birefringence is demonstrated.


European Journal of Neuroscience | 2011

Blue light stress in retinal neuronal (R28) cells is dependent on wavelength range and irradiance

Lilla Knels; Monika Valtink; Cora Roehlecke; Amelie Lupp; Jamlec de la Vega; Mirko Mehner; Richard Funk

The aim of our study was to elucidate the role of wavelength and irradiance in blue light retinal damage. We investigated the impact of blue light emitted from light‐emitting diode (LED) modules with peaks at either 411 nm (half bandwidth 17 nm) or 470 nm (half bandwidth 25 nm) at defined irradiances of 0.6, 1.5 and 4.5 W/m2 for 411 nm and 4.5 W/m2 for 470 nm on retinal neuronal (R28) cells in vitro. We observed a reduction in metabolic activity and transmembrane potential of mitochondria when cells were irradiated at 411 nm at higher irradiances. Furthermore, production of mitochondrial superoxide radicals increased significantly when cells were irradiated with 411 nm light at 4.5 W/m2. In addition, such irradiation caused an activation of the antioxidative glutathion system. Using vital staining, flow cytometry and western blotting, we were able to show that apoptosis only took place when cells were exposed to 411 nm blue light at higher irradiances; necrosis was not observed. Enhanced caspase‐3 cleavage product levels confirmed that this effect was dependent on light irradiance. Significant alterations of the above‐mentioned parameters were not observed when cells were irradiated with 471 nm light despite a high irradiance of 4.5 W/m2, indicating that the cytotoxic effect of blue light is highly dependent on wavelength. The observed phenomena in R28 cells at 411 nm (4.5 W/m2) point to an apoptosis pathway elicited by direct mitochondrial damage and increased oxidative stress. Thus, light of 411 nm should act via impairment of mitochondrial function by compromising the metabolic situation of these retinal neuronal cells.


Journal of Biomedical Optics | 2012

Endoscopic optical coherence tomography device for forward imaging with broad field of view

Anke Burkhardt; Julia Walther; Peter Cimalla; Mirko Mehner; Edmund Koch

One current challenge of studying human tympanic membranes (TM) with optical coherence tomography (OCT) is the implementation of optics that avoid direct contact with the inflamed tissue. At the moment, no commercial device is available. We report an optics design for contactless forward imaging endoscopic optical coherence tomography (EOCT) with a large working distance (WD) and a broad field of view (FOV) by restricting the overall diameter of the probe to be small (3.5 mm), ensuring a sufficient numerical aperture. Our system uses a gradient-index (GRIN) relay lens and a GRIN objective lens, and executes a fan-shaped optical scanning pattern. The WD and FOV can be adjusted by manually changing the distance between the triplet and the GRIN relay lens. The measured lateral resolution is ∼28  μm at a WD of 10 mm with a FOV of 10 mm. Additionally, a camera and an illumination beam path were implemented within the probe for image guidance during investigations of the TM. We demonstrated the performance of the EOCT design by 3-D imaging of a human TM ex vivo and in vivo with a k-linear spectral domain OCT system.


Food Chemistry | 2016

Improved non-invasive Optical Coherence Tomography detection of different engineered nanoparticles in food-mimicking matrices

Ringo Grombe; Lars Kirsten; Mirko Mehner; T Linsinger; Edmund Koch

Food industry and regulators require fast and reliable analytical methods for quality control. This especially counts for the detection of engineered nanomaterials (ENMs) in food products. Respective EU regulation is in force, but the development of appropriate methods is still underway. This paper updates the scope of Optical Coherence Tomography (OCT) for ENM/food matrix analysis. A range of nanomaterials and composites - Au@SiO2, Ag, Ag@SiO2 and SiO2 - in a simplified food matrix was investigated. The earlier finding of linear dependencies between concentration in the dispersion and light responses could be reproduced. Being able to analyse non-invasively for a relevant industrial compound such as SiO2, makes OCT an excellent candidate for screening purposes.


Food Chemistry | 2014

Feasibility of non-invasive detection of engineered nanoparticles in food mimicking matrices by Optical Coherence Tomography

Ringo Grombe; Lars Kirsten; Mirko Mehner; T Linsinger; Hendrik Emons; Edmund Koch

The study was dedicated towards the detection of Engineered Nanoparticles (ENPs) by means of Optical Coherence Tomography (OCT). Polymeric films were produced to mimic complex food matrices whereas gold nanorods (AuNRs) were embedded to act as ENPs. The straightforward coating application resulted in a sufficient film wetting, adhesion and homogenous AuNR distribution. Compared to food samples, these films are simpler and better defined. Such artefacts are therefore promising candidate materials for quality assurance and regulatory matters. The OCT investigations revealed a dependency of the measured signal intensity on the AuNR concentration in the film. The limit of detection for the setup and material was estimated to be -8 dB. This value corresponds to a ppm nanoparticle concentration being well below the concentration used in food additive applications. Thus, the findings indicate the potential of OCT to screen food/feed products for a number of ENPs.


Journal of Biomedical Optics | 2015

Imaging of nanoparticle-labeled stem cells using magnetomotive optical coherence tomography, laser speckle reflectometry, and light microscopy

Peter Cimalla; Theresa Werner; Kai Winkler; Claudia Mueller; Sebastian Wicht; Maria Gaertner; Mirko Mehner; Julia Walther; Bernd Rellinghaus; Dierk Wittig; Mike O. Karl; Marius Ader; Richard Funk; Edmund Koch

Abstract. Cell transplantation and stem cell therapy are promising approaches for regenerative medicine and are of interest to researchers and clinicians worldwide. However, currently, no imaging technique that allows three-dimensional in vivo inspection of therapeutically administered cells in host tissues is available. Therefore, we investigate magnetomotive optical coherence tomography (MM-OCT) of cells labeled with magnetic particles as a potential noninvasive cell tracking method. We develop magnetomotive imaging of mesenchymal stem cells for future cell therapy monitoring. Cells were labeled with fluorescent iron oxide nanoparticles, embedded in tissue-mimicking agar scaffolds, and imaged using a microscope setup with an integrated MM-OCT probe. Magnetic particle-induced motion in response to a pulsed magnetic field of 0.2 T was successfully detected by OCT speckle variance analysis, and cross-sectional and volumetric OCT scans with highlighted labeled cells were obtained. In parallel, fluorescence microscopy and laser speckle reflectometry were applied as two-dimensional reference modalities to image particle distribution and magnetically induced motion inside the sample, respectively. All three optical imaging modalities were in good agreement with each other. Thus, magnetomotive imaging using iron oxide nanoparticles as cellular contrast agents is a potential technique for enhanced visualization of selected cells in OCT.


Optical Coherence Tomography and Coherence Techniques II (2005), paper TuB2 | 2005

Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs

Alexander Popp; Martina Wendel; Lilla Knels; Peter Knuschke; Mirko Mehner; Thea Koch; Dennis Boller; Peter Koch; Edmund Koch

A compact common path Fourier domain optical coherence tomography (FD-OCT) system based on a broadband superluminescence diode is used for biomedical imaging. The epidermal thickening of human skin after exposure to ultraviolet radiation is measured to proof the feasibility of FD-OCT for future substitution of invasive biopsies in a long term study on natural UV skin protection. The FD-OCT system is also used for imaging lung parenchyma. FD-OCT images of a formalin fixated lung show the same alveolar structure as scanning electron microscopy images. In the ventilated and blood-free perfused isolated rabbit lung FD-OCT is used for real-time cross-sectional image capture of alveolar mechanics throughout tidal ventilation. The alveolar mechanics changing from alternating recruitment-derecruitment at zero positive end-expiratory pressure (PEEP) to persistent recruitment after applying a PEEP of 5 cm H2O is observed in the OCT images.


Photochemistry and Photobiology | 2016

Effects of Narrow-band IR-A and of Water-Filtered Infrared A on Fibroblasts

Lilla Knels; Monika Valtink; Helmut Piazena; Jamlec de la Vega Marin; Kerstin Gommel; Amelie Lupp; Cora Roehlecke; Mirko Mehner; Richard Funk

Exposures of the skin with electromagnetic radiation of wavelengths between 670 nm and 1400 nm are often used as a general treatment to improve wound healing and reduce pain, for example, in chronic diabetic skin lesions. We investigated the effects of water‐filtered infrared A (wIRA) and of narrow‐band IR‐A provided by a light‐emitting diode LED (LED‐IR‐A) irradiation in vitro on 3T3 fibroblast cultures under defined conditions with and without glyoxal administration. Glyoxal triggers the formation of advanced glycation end products, thereby mimicking a diabetic metabolic state. Cell viability and apoptotic changes were determined by flow cytometry after vital staining with Annexin V, YO‐PRO‐1 and propidium iodide (PI), and by SubG1 assay. Mitochondrial function and oxidative stress were examined by vital staining for radical production, mitochondrial membrane potential (MMP) and the ratio of reduced‐to‐oxidized glutathione (GSH/GSSG). The metabolic state was monitored by a resazurin conversion assay. The numbers of apoptotic cells were reduced in cultures irradiated with wIRA or LED‐IR‐A. More mitochondria showed a well‐polarized MMP after wIRA irradiation in glyoxal damaged cells. LED‐IR‐A treatment specifically restored the GSH/GSSG ratio. The immediate positive effects of wIRA and LED‐IR‐A observed in living cells, particularly on mitochondria, reflect the therapeutic benefits of wIRA and LED‐IR‐A.


Optical Coherence Tomography and Coherence Techniques IV (2009), paper 7372_0Z | 2009

Simultaneous dual-band spectral domain optical coherence tomography using a supercontinuum laser light source

Peter Cimalla; Mirko Mehner; Maximiliano Cuevas; Julia Walther; Edmund Koch

Optical coherence tomography (OCT) is performed in the spectral domain simultaneously at two different wavelength bands centered at 800 nm and 1250 nm. A novel commercial supercontinuum laser is applied as a single light source whose emission spectrum is shaped by optical and spatial filtering to obtain an adequate double peak spectrum. After spectral shaping, the wavelength bands 700 - 900 nm and 1100 - 1400 nm are used for OCT imaging. A fiber-coupled setup optimized for both spectral regions facilitates easy and flexible access to the measurement area. Each wavelength band is analyzed with an individual spectrometer at an A-scan rate of about 12 kHz which allows real-time sample examination. The free-space axial resolutions were measured to be less than 4.5 μm and 7 μm at 800 nm and 1250 nm, respectively. This technique combines the high resolution at 800 nm with the enhanced imaging depth at 1250 nm. Furthermore, spatially resolved spectroscopic sample features are extracted by comparing the backscattering properties at the two different wavelength bands, showing the ability of dual-band OCT to enhance image contrast.


Optical Coherence Tomography and Coherence Techniques VI (2013), paper 88020R | 2013

Optical coherence tomography as a reference method for the detection of nanoparticles in thin-film polymer matrices

Lars Kirsten; Mirko Mehner; Ringo Grombe; Thomas P. J. Linsinger; Hendrik Emons; Edmund Koch

In food and feed production an emerging issue is the use of nanoparticles as additives to control specific properties of the products. In this context, one focus in food chemistry is the development and evaluation of measurement techniques, which could allow the detection and quantification of nanoparticles in food products. For this purpose, special noninvasive and non-destructive reference methods are required, which allow subsequent analysis with other measurement techniques. Additionally, non-invasive and fast imaging techniques are potentially appropriate for applications in the food production. Optical coherence tomography is sensitive to the backscattering of particles and is regarded as a promising technique due to its spatial resolution, the high sensitivity and the high-speed capability. In this study, the ability of OCT as a potential reference method for the detection of nanoparticles in thin-film polymer samples was investigated by determining the correlation between nanoparticle concentration and signal intensity.

Collaboration


Dive into the Mirko Mehner's collaboration.

Top Co-Authors

Avatar

Edmund Koch

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Julia Walther

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lars Kirsten

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Lilla Knels

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Cimalla

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard Funk

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cora Roehlecke

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Monika Valtink

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anke Burkhardt

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge