Mirko Rivara
University of Parma
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mirko Rivara.
Expert Opinion on Therapeutic Patents | 2010
Valentina Zuliani; Mirko Rivara; Marco Fantini; Gabriele Costantino
Importance of the field: The voltage-gated sodium channels (VGSCs) play a fundamental role in controlling cellular excitability and their abnormal activity is related to several pathological processes, including cardiac arrhythmias, epilepsy, neurodegenerative diseases, spasticity, chronic and neuropathic pain. In particular, neuropathic pain (e.g., postherpetic and trigeminal neuralgia, diabetic neuropathy and spinal cord injury) is a serious clinical problem that affects a high percentage of the world population. Because an altered sodium channel isoform expression profile has been considered one reason for the changes in neuronal excitability, there is a continuous quest for new selective molecules targeting sodium channels for the treatment of chronic pain. Areas covered in this review: PubMed, http://www.sciencedirect.com/, SciFinder® Scholar and http://ep.espacenet.com/ were used as sources for this review and patents between 2007 and September 2009 were taken into account for the sodium channel blockers molecular classes reviewed and discussed herein. What the reader will gain: The sodium channel blockers reported in this review have been categorized into different molecular classes on the basis of their wide structural diversity. This classification, somewhat arbitrary, does not necessarily reflect the presence of pharmacophoric elements but offers a useful way to discuss and comment on structurally homogenous classes of chemotypes recently patented. Take home message: The continuous discoveries in the field of sodium channel blockers, highlighted by the increasing numbers of patent applications published in the last few years and by the numbers of compounds currently in clinical development, underline the importance of this target for the treatment of neuropathic pain. The great difficulty in the design of new selective and active structures, not obtained from old VGSC blockers that are often associated with high risk of adverse effects, is a strong challenge for medicinal chemistry research.
Current Topics in Medicinal Chemistry | 2009
Valentina Zuliani; Manoj K. Patel; Marco Fantini; Mirko Rivara
The voltage-gated sodium channels (VGSCs) play a fundamental role in controlling cellular excitability. Abnormal activity of sodium channels is related to several pathological processes, including cardiac arrhythmias, epilepsy, chronic pain, neurodegenerative diseases and spasticity. In view of this, VGSCs are considered important therapeutic targets for the treatment of these disorders. To date, nine VGSC isoforms have been identified and have a distinct pattern of expression within the human body. In addition, VGSCs also have distinct electrophysiological profiles with differing activation and inactivation states. As such, there is a concerted effort to develop not only isoform selective antagonists, but also antagonists that exhibit state selectivity, particularly to the inactivated state of the channel. This review will provide a brief historical prospective and will primarily focus on recent advances in the development of isoform specific and state selective sodium channel antagonists and the medicinal chemistry involved, surveying the emerging therapeutic fields.
European Journal of Medicinal Chemistry | 2009
Valentina Zuliani; Caterina Carmi; Mirko Rivara; Marco Fantini; Alessio Lodola; Federica Vacondio; Fabrizio Bordi; Pier Vincenzo Plazzi; Andrea Cavazzoni; Maricla Galetti; Roberta R. Alfieri; Pier Giorgio Petronini; Marco Mor
Benzylidene hydantoins have been recently reported as a new class of EGFR inhibitors. We describe here a simple and efficient methodology for the parallel solution-phase synthesis of a library of 5-benzylidene hydantoins, which were evaluated for antiproliferative activity on the human lung adenocarcinoma A549 cell line. Various substituents at positions 1, 3 and 5 on the hydantoin nucleus were examined. In the presence of a 5-benzylidene group and of a lipophilic substituent at position 1, most of the tested compounds inhibited cell proliferation at a concentration of 20 microM. Compound 7 (UPR1024), bearing 1-phenethyl and (E)-5-p-OH-benzylidene substituents, was found to be the most active derivative of the series. It inhibited EGFR autophosphorylation and induced DNA damage in A549 cells. Compound 7 and other synthesized 5-benzylidene hydantoin derivatives increased p53 levels, suggesting that the dual mechanism of action was a common feature shared by compound 7 and other member of the series.
ACS Combinatorial Science | 2010
Marco Fantini; Valentina Zuliani; Mario A. Spotti; Mirko Rivara
A simple and efficient microwave assisted synthesis of imidazobenzoxazines, imidazobenzoxazin-5-ones, and imidazobenzoxazin-5-thiones with broad chemistry scope is described. The molecules were prepared both under conventional as well as microwave heating conditions, to provide in high yields with clean and scalable reactions a small library of imidazole-based privileged structures for drug discovery.
Journal of Pineal Research | 2006
Gilberto Spadoni; Giuseppe Diamantini; Annalida Bedini; Giorgio Tarzia; Federica Vacondio; Claudia Silva; Mirko Rivara; Marco Mor; Pier Vincenzo Plazzi; Morena Zusso; Davide Franceschini; Pietro Giusti
Abstract: 5‐Methoxy‐2‐(N‐acetylaminoethyl)indole (5d), a melatonin analogue derived from the transposition of the acetylaminoethyl side chain from C3 to C2 of the indole nucleus, had been previously characterized as a low affinity antagonist at MT1 and MT2 membrane receptors; this molecule is endowed with good in vitro antioxidant and cytoprotective potency in rat cerebellar cell cultures, comparable to or better than those of melatonin. In order to further investigate the role of structure–antioxidant activity relationships in cytoprotection, the structure of 5d was systematically modulated to design a new series of compounds. The 5‐methoxy group was replaced by substituents with different electronic and lipophilic properties and it was moved to a different position on the indole ring. Other modifications of the lead structure involved the methylation of the indole nitrogen or its replacement by a sulfur atom. The side chain was also modified either increasing its lipophilicity or introducing an ionisable acid group. The antioxidant activity of this set of compounds was evaluated by the ABTS and conjugated dienes (CD) assays, while their cytoprotection was evaluated against kainate‐induced cytotoxicity in cultured cerebellar neurons. In both antioxidant assays, the shift of the 5‐methoxy group to the 4‐position of the indole nucleus led to the most active radical scavenger (9), more potent than the parent compound and melatonin in the antioxidant tests, but much less effective as a cytoprotectant. Sharp structure–activity relationships were registered for cytoprotection, where the maintenance of the 5‐alkoxy‐2‐(N‐acylaminoethyl)indole scaffold appeared as the key feature to confer both antioxidant and cytoprotective activity to the structure. Some derivatives of the set, however, together with the most potent 5d, maintained a significant antioxidant and cytoprotective effect and could be employed as tools for in vivo pharmacological investigations on neuroprotective efficacy of melatonin‐related indoles.
Current Topics in Medicinal Chemistry | 2012
Valentina Zuliani; Marco Fantini; Mirko Rivara
The voltage-gated sodium channels (VGSCs) are a family of membrane proteins forming a pore, through which they selectively conduct sodium ions inward and outward cells plasma membranes in response to variations of membrane potentials, playing a fundamental role in controlling cellular excitability. Growing evidences suggest that abnormal VGSCs are involved in the pathophysiology of both acquired and inherited epilepsy. Approximately two dozen drugs are currently marketed for the treatment of epilepsy and most of them act as sodium channel blockers, preventing the return of the channels to the active state by stabilizing the inactive form. Despite the many drugs on the market, 30% of patients continue to experience seizures even in the presence of optimal doses of AEDs, while others continue to suffer from medication induced side effects. Thus, there is a great need to continue the search for new AEDs that are not only more effective, but also have a better side effects profile. For this reason, many efforts have been made in the recent years to identify new sodium channel blockers for the treatment of epilepsy. These studies have led to different classes of compounds, characterized by a great structural diversity. The aim of this review is to provide an introduction on the structure and function of the sodium channels, followed by a brief historical perspective on the sodium channel blockers in use as anticonvulsant drugs. Moreover, it will focus on the medicinal chemistry of the sodium channel blockers recently published (2008-2011) and the drug design/molecular modeling studies related to the receptor.
Expert Opinion on Investigational Drugs | 2016
Mirko Rivara; Valentina Zuliani
ABSTRACT Introduction: Effective and safe drugs for the treatment of neuropathic pain are still an unmet clinical need. Neuropathic pain, caused by a lesion or disease that affects the somatosensory system, is a debilitating and hampering condition that has a great economic cost and, above all, a tremendous impact on the quality of life. Sodium channels are one of the major players in generating and propagating action potentials. They represent an appealing target for researchers involved in the development of new and safer drugs useful in the treatment of neuropathic pain. The actual goal for researchers is to target sodium channels selectively to stop the abnormal signaling that characterizes neuropathic pain while leaving normal somatosensory functions intact. Areas covered: This review covers the most recent publications regarding sodium channel blockers and their development as new treatments for neuropathic pain. The main areas discussed are the natural sources of new blockers, such as venom extracts and the recent efforts from many pharmaceutical companies in the field. Expert opinion: There have been serious efforts by both the pharmaceutical industry and academia to develop new and safer therapeutic options for neuropathic pain. A number of different strategies have been undertaken; the main efforts directed towards the identification of selective blockers starting from both natural products or screening chemical libraries. At this time, researchers have identified and characterized selective compounds against NaV1.7 or NaV1.8 voltage-gated sodium channels but only time will tell if they reach the market.
Bioorganic & Medicinal Chemistry | 2009
Marco Fantini; Mirko Rivara; Valentina Zuliani; Christopher L. Kalmar; Federica Vacondio; Claudia Silva; Aparna R. Baheti; Natasha Singh; Ellen C. Merrick; Ravi S. Katari; Giuseppe Cocconcelli; Chiara Ghiron; Manoj K. Patel
Sodium (Na) channels continue to represent an important target for the development of novel anticonvulsants. We have synthesized and evaluated a series of 2,4(5)-diarylimidazoles for inhibition of the human neuronal Na(V)1.2 Na channel isoform. Starting with the unsubstituted lead compound previously published 3, SAR studies were performed introducing substituents with different physico-chemical properties. Lipophilicity (log D(7.4)) and basicity (pK(a)) of the compounds were measured and submitted for QSPR investigations. Some of the active compounds described had IC(50) values that were considerably lower than our lead compound. In particular, the m-CF(3) disubstituted 22 was the most active compound, inhibiting hNa(V)1.2 currents within the nanomolar concentration range (IC(50)=200 nM). In comparison, lamotrigine and phenytoin, two clinically used anticonvulsant drugs known to inhibit Na channels, had IC(50)s values that were greater than 100 microM.
Advances in Experimental Medicine and Biology | 2003
Marco Mor; Gilberto Spadoni; Giuseppe Diamantini; Annalida Bedini; Giorgio Tarzia; Claudia Silva; Federica Vacondio; Mirko Rivara; Pier Vincenzo Plazzi; Davide Franceschinit; Morena Zussot; Pietro Giusti
Melatonin (MLT) is known for its radical scavenger activity, which had been related to its ability to protect neuronal cells from different kinds of oxidative stress. In particular, MLT protects rat cerebellum granular cells from kainate-induced necrosis at concentrations higher than 100 microM, and is able to reduce lipoperoxidation induced by radical stress in rat brain homogenate at similar concentrations. On the other hand, MLT has nanomolar affinity for its membrane receptors (MT1 and MT2), and these are completely saturated at the high concentrations employed when the cytoprotective effect is observed. Other indole derivatives are also known to possess antioxidant and cytoprotective activity. In order to dissociate the cytoprotective effect of MLT from its receptor affinity, and to investigate the structure-activity relationships (SAR) between this effect and some potentially relevant chemical properties, we prepared a series of indole derivatives, where the structure of MLT was gradually modulated, varying the 5-methoxy group nature and position, the acylaminoethyl chain position, and by the introduction of lipophilic groups. These modifications resulted in a set of compounds having different receptor affinity and intrinsic activity, different lipophilicity, and different substitution at the indole nucleus. The compounds were tested for their antioxidant potency by the ABTS test and by inhibition of rat brain homogenate lipoperoxidation; their cytoprotective effect was also estimated from the inhibition of kainate-induced cellular death on rat cerebellum granular cells, and the results were evaluated by SAR comparison and QSAR analysis. An isomer of MLT resulted more potent and effective than MLT itself in the cytoprotection test, although it showed similar potency in the peroxidation test, and it was devoid of the ability to stimulate MT1 and MT2 receptors. This compound was selected as the lead compound for a further SAR study, devoted to the optimization of the cytoprotective effect and to the investigation on its mechanism.
Bioorganic & Medicinal Chemistry Letters | 2008
Mirko Rivara; Aparna R. Baheti; Marco Fantini; Giuseppe Cocconcelli; Chiara Ghiron; Christopher L. Kalmar; Natasha Singh; Ellen C. Merrick; Manoj K. Patel; Valentina Zuliani
A small family of novel 2,4(5)-diarylimidazoles were prepared through a simple and efficient synthesis and evaluated as potential inhibitors of hNa(v)1.2 sodium channel currents. One member of this series (4) exhibited profound inhibition of Na(v)1.2 currents, emerging as a promising lead compound for further structure-activity relationship studies for the development of novel sodium channel blockers.