Miroslav Bajić
University of Zagreb
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miroslav Bajić.
Bioorganic & Medicinal Chemistry | 2009
Ivana Stolić; Katarina Mišković; Anahí Magdaleno; Ariel Mariano Silber; Ivo Piantanida; Miroslav Bajić; Ljubica Glavaš-Obrovac
Novel bisbenzimidazoles (4-6), characterized by 3,4-ethylenedioxy-extension of thiophene core, revealed pronounced affinity and strong thermal stabilization effect toward ds-DNA. They interact within ds-DNA grooves as dimmers or even oligomers and agglomerate along ds-RNA. Compounds 4-6 have shown moderate to strong antiproliferative effect toward panel of eight carcinoma cell lines. Compound 5 displayed the best inhibitory potential and in equitoxic concentration (IC(50)=1 x 10(-6)M) induced accumulation of cells in G2/M phase after 48 h of incubation. Fluorescence microscopy showed that 5 entered into live HeLa cells within 30 min, but did not accumulate in nuclei even after 2.5h. Compound 5 inhibited the growth of Trypanosome cruzi epimastigotes (IC(50)=4.3 x 10(-6)M).
Journal of the Science of Food and Agriculture | 2015
Kristina Starčević; Luka Krstulović; Diana Brozić; Maja Maurić; Zvonko Stojević; Željko Mikulec; Miroslav Bajić; Tomislav Mašek
BACKGROUND Various studies have been conducted to evaluate the effect of phenolic compounds on production animals. Supplementation of animal diets with phytogenic compounds, such as different essential oils and polyphenols, could improve animal productivity as well as the chemical composition and oxidative stability of food derived from those animals. RESULTS During the trial, 80 male broilers of the Ross 308 strain were allocated to four dietary groups: control and three groups supplemented with thymol, tannic acid and gallic acid. Feed utilisation was improved in all experimental groups and tannic acid also improved final body weight. Gallic acid significantly increased n-3 long-chain polyunsaturated fatty acids. A hypocholesterolaemic effect was noticed in all groups in liver, but not in muscle. The glucose lowering effect in serum was noticed in the tannic acid group in comparison to other experimental groups. Oxidative susceptibility was improved by tannic acid in liver and breast and by gallic acid in breast muscle. CONCLUSION The inclusion of phenolic compounds enhanced growth performance, decreased lipid oxidation, decreased cholesterol value and increased beneficial fatty acids content. Positive effects varied depending on phenolic compound used and, therefore, it would be interesting to further investigate synergistic effects of investigated phenolic compound.
European Journal of Medicinal Chemistry | 2011
Ivana Stolić; Katarina Mišković; Ivo Piantanida; Mirela Baus Lončar; Ljubica Glavaš-Obrovac; Miroslav Bajić
A series of novel 2,5-bis(amidinophenyl)-3,4-ethylenedioxythiophenes (5-10 and 15) has been synthesized. Compounds 5-10 bind to the DNA minor groove as the dominant binding site and strongly stabilize the double helix of ct-DNA. Surprisingly, the same compounds also thermally stabilize ds-RNA, whereby most of them form stacked dimers along the RNA double helix. The only exception is compound 15 which, due to its structural features, showed no interaction with DNA or RNA. Compounds 5-10 have shown a moderate to strong cytotoxic effect (GI50=1.5-9.0 μM) on a panel of seven tumour cell lines. The diimidazoline derivative 9, due to its highest inhibitory potential on the growth of all tested tumour cell lines, was investigated in more detail by testing its ability to enter into cells and influence the cell cycle. Compound 9 (5 μM) was internalized successfully in cell cytoplasm during a 30-min incubation period, followed by nuclear localization upon 90-min incubation. Significant arrest in HeLa cells in the G2/M phase, shown by cell cycle analysis at an equitoxic (50 μM) concentration, suggests interaction of a studied compound with cellular DNA as the main mode of biological action.
European Journal of Medicinal Chemistry | 2015
Ivana Stolić; Hana Čipčić Paljetak; Mihaela Perić; Mario Matijašić; Višnja Stepanić; Donatella Verbanac; Miroslav Bajić
Current antibacterial chemotherapeutics are facing an alarming increase in bacterial resistance pressuring the search for novel agents that would expand the available therapeutic arsenal against resistant bacterial pathogens. In line with these efforts, a series of 9 amidine derivatives of 3,4-ethylenedioxythiophene were synthesized and, together with 18 previously synthesized analogs, evaluated for their relative DNA binding affinity, in vitro antibacterial activities and preliminary in vitro safety profile. Encouraging antibacterial activity of several subclasses of tested amidine derivatives against Gram-positive (including resistant MRSA, MRSE, VRE strains) and Gram-negative bacterial strains was observed. The bis-phenyl derivatives were the most antibacterially active, while compound 19 from bis-benzimidazole class exhibited the widest spectrum of activity (with MIC of 4, 2, 0.5 and ≤0.25 μg/ml against laboratory strains of Staphyloccocus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Moraxella catarrhalis, respectively and 4-32 μg/ml against clinical isolates of sensitive and resistant S. aureus, Staphylococcus epidermidis and Enterococcus faecium) and also demonstrated the strongest DNA binding affinity (ΔTm of 15.4 °C). Asymmetrically designed compounds and carboxamide-amidines were, in general, less active. Molecular docking indicated that the shape of the 3,4-ethylenedioxythiophene derivatives and their ability to form multiple electrostatic and hydrogen bonds with DNA, corresponds to the binding modes of other minor-groove binders. Herein reported results encourage further investigation of this class of compounds as novel antibacterial DNA binding agents.
Antimicrobial Agents and Chemotherapy | 2016
Richard Marcel Bruno Moreira Girard; Marcell Crispim; Ivana Stolić; Flávia Silva Damasceno; Marcelo Santos da Silva; Elizabeth M. F. Pral; Maria Carolina Elias; Miroslav Bajić; Ariel Mariano Silber
ABSTRACT Trypanosoma cruzi is the etiological agent of Chagas disease, affecting approximately 10 million people in the Americas and with some 40 million people at risk. The objective of this study was to evaluate the anti-T. cruzi activity of three new diamidines that have a 3,4-ethylenedioxy extension of the thiophene core, designated MB17, MB19, and MB38. All three diamidines exhibited dose-dependent inhibition of epimastigote replication. The mechanisms of action of these diamidines were investigated. Unlike MB17 and MB19, MB38 exhibited a significant increase in the number of annexin-propidium iodide double-labeled cells compared to levels in control parasites. As MB17 had shown a lower 50% inhibitory concentration (IC50) against epimastigote growth, the mechanism of action of this drug was studied in more detail. MB17 triggered a decrease in the intracellular ATP levels. As a consequence, MB17 affected the genomic DNA and kinetoplast DNA (kDNA) and impaired the parasite cell cycle. Moreover, MB17 caused DNA fragmentation, with a more severe effect on kDNA than on nuclear DNA, resulting in dyskinetoplastic cells. MB17 was tested for toxicity and effectiveness for the treatment of infected CHO-K1 cells, exhibiting a 50% cytotoxic concentration (CC50) of 13.47 ± 0.37 μM and an IC50 of 0.14 ± 0.12 μM against trypomastigote release. MB17 also diminished the infection index by 60% at 0.5 μM. In conclusion, despite belonging to the same family, these diamidines have different efficiencies. To summarize, MB17 was the most potent of these diamidines against epimastigotes, producing DNA damage preferentially in kDNA, impairing the parasite cell cycle, and decreasing the infection index and trypomastigote release from infected mammalian host cells, with a high selectivity index (SI) (<90). These data suggest that MB17 could be an interesting lead compound against T. cruzi.
Structural Chemistry | 2012
Ivana Stolić; Krešimir Molčanov; Goran Kovačević; Biserka Kojić-Prodić; Miroslav Bajić
A series of N,N’-disubstituted 3,4-ethylenedioxythiophene-2,5-dicarboxamides was synthesised by amide bond formation between 3,4-ethylenedioxythiophene-2,5-dicarbonyl chloride and corresponding primary amines, where the size and the nature of the substituent were varied. The crystal structures of prepared compounds were determined by X-ray structure analysis. Mechanism and reaction rates of interconversion between conformational isomers were obtained by DFT calculations. All studied compounds reveal axial chirality with molecular symmetry C2. Amide bond isomerisation and twisting of the dioxane ring in studied compounds results in the formation of series of conformers of which the s-trans/s-trans conformer is energetically most favourable.
Rapid Communications in Mass Spectrometry | 2012
Ivana Stolić; Igor Bratoš; Goran Kovačević; Miroslav Bajić
The sequential product ion (MS(n)) fragmentation of four symmetric diamide derivatives of 3,4-ethylenedioxythiophene were characterized using ion trap mass spectrometry with electrospray ionization and their fragmentation patterns were studied. The experimental data consists of mass spectra obtained by tandem mass spectrometry, and calculations were obtained by the M06-2X/6-31 G (d,p) method. Investigated compounds represent building blocks in synthesis of compounds used in different areas of chemistry and industry such as in medicinal chemistry, as potential anticancer and anticonvulsant agents, in organic chemistry as linkers for solid-phase synthesis, and in the synthesis of a variety of materials in polymer chemistry. We present herein the investigation of the fragmentation pathway of protonated diamide derivatives of 3,4-ethylenedioxythiophene that involves the identification of fragments, influence of proton transfer on direction of fragmentation and mechanisms of reactions by which the fragmentation process occurs. Data obtained from product ion spectra of these protonated compounds and density functional theory (DFT) calculations indicate that the fragmentation process takes place via four main reactions: amido-iminol proton transfer, reverse cycloaddition, cleavage of the amide bond, and isocyanic acid elimination. The 3,4-ethylenedioxythiophene-2,5-dicarboxamide was observed as an intermediate in the fragmentation of its alkyl derivatives. To our knowledge, this work brings the first correct description of the mechanism of elimination of isocyanic acid.
European Food Research and Technology | 2014
Tomislav Mašek; Luka Krstulović; Diana Brozić; Marina Vranić; Maja Maurić; Miroslav Bajić; Kristina Starčević
The objective of the study was to explore whether it is possible to alter cow colostrum and early milk fatty acid composition with a low level of fat supplement, high in docosahexaenoic (DHA) and eicosapentaenoic (EPA) fatty acid. Diets included a control diet and a diet supplemented with DHA- and EPA-enriched fat supplement. Addition of fat supplement significantly decreased saturated fatty acids, C14:0 and C16:0 and increased the values of monounsaturated fatty acids, polyunsaturated fatty acids (PUFA), n3 fatty acids, EPA, DHA, C18:1n9cis and C18:1n11trans. The percentage of short-chain fatty acids significantly increased with the progress of lactation, while the percentage of PUFA, n3 and n6 significantly decreased. These results showed that fat supplement, high in DHA and EPA, modified the fatty acid profile of colostrum and milk fat and increased the proportion of beneficial fatty acids for human health.
Acta Crystallographica Section E-structure Reports Online | 2012
Krešimir Molčanov; Ivana Stolić; Biserka Kojić-Prodić; Goran Kovačević; Miroslav Bajić
In the title compound, C10H14N3 +·Cl−, the tetrahydropyridinium ring of the cation, which adopts a slightly distorted envelope conformation, is disordered over two orientations with an occupancy ratio of 0.653 (5):0.347 (5). The amidinium fragment of the major conformer is twisted relative to the benzene ring by 22.5 (6)° and the two C—N bond lengths of this fragment are similar [1.3228 (16) and 1.319 (2) Å]. In the crystal, the chloride anions are involved in three N—H⋯Cl hydrogen bonds, which link the components into a two-dimensional hydrogen-bonded network parallel to (010).
Acta Crystallographica Section E-structure Reports Online | 2011
Krešimir Molčanov; Ivana Stolić; Biserka Kojić-Prodić; Miroslav Bajić
The asymmetric unit of the title compound, 2C9H12N3 +·2Cl−·H2O, comprises two molecules, two chloride anions and one molecule of crystal water. In the imidazolinium ring, the protonation contributes to delocalization of the positive charge over the two C—N bonds. Both chloride anions are acceptors of four hydrogen bonds in a flattened tetrahedron environment. The donors are NH2 groups, the NH groups of the imidazolinium rings and the water molecule. These hydrogen bonds and N—H⋯O(H2O) hydrogen bonds form a three-dimensional network.