Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miroslav Dostalek is active.

Publication


Featured researches published by Miroslav Dostalek.


Oxidative Medicine and Cellular Longevity | 2012

Insulin Resistance, Ceramide Accumulation, and Endoplasmic Reticulum Stress in Human Chronic Alcohol-Related Liver Disease

Lisa Longato; Kelsey Ripp; Mashiko Setshedi; Miroslav Dostalek; Fatemeh Akhlaghi; Mark Branda; Jack R. Wands; Suzanne M. de la Monte

Background. Chronic alcohol-related liver disease (ALD) is mediated by insulin resistance, mitochondrial dysfunction, inflammation, oxidative stress, and DNA damage. Recent studies suggest that dysregulated lipid metabolism with accumulation of ceramides, together with ER stress potentiate hepatic insulin resistance and may cause steatohepatitis to progress. Objective. We examined the degree to which hepatic insulin resistance in advanced human ALD is correlated with ER stress, dysregulated lipid metabolism, and ceramide accumulation. Methods. We assessed the integrity of insulin signaling through the Akt pathway and measured proceramide and ER stress gene expression, ER stress signaling proteins, and ceramide profiles in liver tissue. Results. Chronic ALD was associated with increased expression of insulin, IGF-1, and IGF-2 receptors, impaired signaling through IGF-1R and IRS1, increased expression of multiple proceramide and ER stress genes and proteins, and higher levels of the C14, C16, C18, and C20 ceramide species relative to control. Conclusions. In human chronic ALD, persistent hepatic insulin resistance is associated with dysregulated lipid metabolism, ceramide accumulation, and striking upregulation of multiple ER stress signaling molecules. Given the role of ceramides as mediators of ER stress and insulin resistance, treatment with ceramide enzyme inhibitors may help reverse or halt progression of chronic ALD.


British Journal of Pharmacology | 2011

Significantly reduced cytochrome P450 3A4 expression and activity in liver from humans with diabetes mellitus.

Miroslav Dostalek; Michael H. Court; Bingfang Yan; Fatemeh Akhlaghi

BACKGROUND AND PURPOSE Patients with diabetes mellitus require pharmacotherapy with numerous medications. However, the effect of diabetes on drug biotransformation is not well understood. Our goal was to investigate the effect of diabetes on liver cytochrome P450 3As, the most abundant phase I drug‐metabolizing enzymes in humans.


Clinical Pharmacokinectics | 2012

Effect of Diabetes Mellitus on Pharmacokinetic and Pharmacodynamic Properties of Drugs

Miroslav Dostalek; Fatemeh Akhlaghi; Martina Puzanovova

The effects of diabetes mellitus on the pharmacokinetics and pharmacodynamics of drugs have been well described in experimental animal models; however, only minimal data exist for humans and the current knowledge regarding the effects of diabetes on these properties remains unclear. Nevertheless, it has been observed that the pharmacokinetics and pharmacodynamics of drugs are changed in subjects with diabetes. It has been reported that diabetes may affect the pharmacokinetics of various drugs by affecting (i) absorption, due to changes in subcutaneous adipose blood flow, muscle blood flow and gastric emptying; (ii) distribution, due to non-enzymatic glycation of albumin; (iii) biotransformation, due to regulation of enzymes/transporters involved in drug biotransformation; and (iv) excretion, due to nephropathy. Previously published data also suggest that diabetes-mediated changes in the pharmacokinetics of a particular drug cannot be translated to others.Although clinical studies exploring the effect of diabetes on pharmacodynamics are still very limited, there is evidence that disease-mediated effects are not limited only to pharmacokinetics but also alter pharmacodynamics. However, for many drugs it remains unclear whether these influences reflect diabetes-mediated changes in pharmacokinetics rather than pharmacodynamics. In addition, even though diabetes-mediated pharmacokinetics and pharmacodynamics might be anticipated, it is important to study the effect on each drug and not generalize from observed data.The available data indicate that there is a significant variability in drug response in diabetic subjects. The discrepancies between individual clinical studies as well as between ex vivo and clinical studies are probably due to (i) the restricted and focused population of subjects in clinical studies; (ii) failure to consider type, severity and duration of the disease; (iii) histopathological characteristics generally being missing; and (iv) other factors such as varying medication use, dietary protein intake, age, sex and obesity. The obesity epidemic in the developed world has also inadvertently influenced the directions of pharmacological research.This review attempts to map new information gained since Gwilt published his paper in Clinical Pharmacokinetics in 1991. Although a large body of research has been conducted and significant progress has been made, we still have to conclude that the available information regarding the effect of diabetes on pharmacokinetics and pharmacodynamics remains unclear and further clinical studies are required before we can understand the clinical significance of the effect. An understanding of diabetes-mediated changes as well as of the source of the variability should lead to the improvement of the medical management and clinical outcomes in patients with this widespread disease.


Drug Metabolism and Disposition | 2011

Diabetes Mellitus Reduces Activity of Human UDP-Glucuronosyltransferase 2B7 in Liver and Kidney Leading to Decreased Formation of Mycophenolic Acid Acyl-Glucuronide Metabolite

Miroslav Dostalek; Michael H. Court; Suwagmani Hazarika; Fatemeh Akhlaghi

Mycophenolic acid (MPA) is an immunosuppressive agent commonly used after organ transplantation. Altered concentrations of MPA metabolites have been reported in diabetic kidney transplant recipients, although the reason for this difference is unknown. We aimed to compare MPA biotransformation and UDP-glucuronosyltransferase (UGT) expression and activity between liver (n = 16) and kidney (n = 8) from diabetic and nondiabetic donors. Glucuronidation of MPA, as well as the expression and probe substrate activity of UGTs primarily responsible for MPA phenol glucuronide (MPAG) formation (UGT1A1 and UGT1A9), and MPA acyl glucuronide (AcMPAG) formation (UGT2B7), was characterized. We have found that both diabetic and nondiabetic human liver microsomes and kidney microsomes formed MPAG with similar efficiency; however, AcMPAG formation was significantly lower in diabetic samples. This finding is supported by markedly lower glucuronidation of the UGT2B7 probe zidovudine, UGT2B7 protein, and UGT2B7 mRNA in diabetic tissues. UGT genetic polymorphism did not explain this difference because UGT2B7*2 or *1c genotype were not associated with altered microsomal UGT2B7 protein levels or AcMPAG formation. Furthermore, mRNA expression and probe activities for UGT1A1 or UGT1A9, both forming MPAG but not AcMPAG, were comparable between diabetic and nondiabetic tissues, suggesting the effect may be specific to UGT2B7-mediated AcMPAG formation. These findings suggest that diabetes mellitus is associated with significantly reduced UGT2B7 mRNA expression, protein level, and enzymatic activity of human liver and kidney, explaining in part the relatively low circulating concentrations of AcMPAG in diabetic patients.


Therapeutic Drug Monitoring | 2012

The concentration of cyclosporine metabolites is significantly lower in kidney transplant recipients with diabetes mellitus.

Fatemeh Akhlaghi; Miroslav Dostalek; Pål Falck; Anisha E. Mendonza; Rune Amundsen; Reginald Y. Gohh; Anders Åsberg

Background: Diabetes mellitus is prevalent among kidney transplant recipients. The activity of drug metabolizing enzymes or transporters may be altered by diabetes leading to changes in the concentration of parent drug or metabolites. This study was aimed to characterize the effect of diabetes on the concentration of cyclosporine (CsA) and metabolites. Methods: Concentration–time profiles of CsA and metabolites (AM1, AM9, AM4N, AM1c, AM19, and AM1c9) were characterized over a 12-hour dosing interval in 10 nondiabetic and 7 diabetic stable kidney transplant recipients. All patients were male, had nonfunctional CYP3A5*3 genotype, and were on combination therapy with ketoconazole. Results: The average daily dose (±SD) of CsA was 65 ± 21 and 68 ± 35 mg in nondiabetic and diabetic subjects, respectively (P = 0.550). Cyclosporine metabolites that involved amino acid 1 (AM1, AM19, AM1c) exhibited significantly lower dose-normalized values of area under the concentration–time curve in patients with diabetes. Moreover, during the postabsorption phase (≥3 hours after dose), metabolite–parent concentration ratios for all metabolites, except AM4N, was significantly lower in diabetic patients. The pharmacokinetic parameters of ketoconazole were similar between the 2 groups thus excluding inconsistent ketoconazole exposure as a source of altered CsA metabolism. Conclusions: This study indicates that diabetes mellitus significantly affects the concentration of CsA metabolites. Because CsA is eliminated as metabolites via the biliary route, the decrease in the blood concentration of CsA metabolites during postabsorption phase would probably reflect lower hepatic cytochrome P450 3A4 enzyme activity. However, other mechanisms including altered expression of transporters may also play a role. Results of cyclosporine therapeutic drug monitoring in diabetic patients must be interpreted with caution when nonspecific assays are used.


Clinical Pharmacokinectics | 2012

Diabetes mellitus reduces the clearance of atorvastatin lactone: results of a population pharmacokinetic analysis in renal transplant recipients and in vitro studies using human liver microsomes.

Miroslav Dostalek; Wai-Johnn Sam; Komal R. Paryani; Joyce S. Macwan; Reginald Y. Gohh; Fatemeh Akhlaghi

BACKGROUND AND OBJECTIVE Patients with diabetes mellitus might be at a higher risk of HMG-CoA reductase inhibitor (statin)-induced myotoxicity, possibly because of reduced clearance of the statin lactone. The present study was designed to investigate the effect of diabetes on the biotransformation of atorvastatin acid, both in vivo in nondiabetic and diabetic renal transplant recipients, and in vitro in human liver samples from nondiabetic and diabetic donors. SUBJECTS AND METHODS A total of 312 plasma concentrations of atorvastatin acid and atorvastatin lactone, from 20 nondiabetic and 32 diabetic renal transplant recipients, were included in the analysis. Nonlinear mixed-effects modelling was employed to determine the population pharmacokinetic estimates for atorvastatin acid and atorvastatin lactone. In addition, the biotransformation of these compounds was studied using human liver microsomal fractions obtained from 12 nondiabetic and 12 diabetic donors. RESULTS In diabetic patients, the plasma concentration of atorvastatin lactone was significantly higher than that of atorvastatin acid throughout the 24-hour sampling period. The optimal population pharmacokinetic model for atorvastatin acid and atorvastatin lactone consisted of a two- and one-compartment model, respectively, with interconversion between atorvastatin acid and atorvastatin lactone. Parent drug was absorbed orally with a population estimate first-order absorption rate constant of 0.457 h(-1). The population estimates of apparent oral clearance (CL/F) of atorvastatin acid to atorvastatin lactone, intercompartmental clearance (Q/F), apparent central compartment volume of distribution after oral administration (V(1)/F) and apparent peripheral compartment volume of distribution after oral administration (V(2)/F) for atorvastatin acid were 231 L/h, 315 L/h, 325 L and 4910 L, respectively. The population estimates of apparent total clearance of atorvastatin lactone (CL(M)/F), apparent intercompartmental clearance of atorvastatin lactone (Q(M)/F) and apparent volume of distribution of atorvastatin lactone after oral administration (V(M)/F) were 85.4 L/h, 166 L/h and 249 L, respectively. The final covariate model indicated that the liver enzyme lactate dehydrogenase was related to CL/F and alanine aminotransferase (ALT) was related to Q/F. Importantly, diabetic patients have 3.56 times lower CL(M)/F than nondiabetic patients, indicating significantly lower clearance of atorvastatin lactone in these patients. Moreover, in a multivariate population pharmacokinetics model, diabetes status was the only significant covariate predicting the values of the CL(M)/F. Correspondingly, the concentration of atorvastatin acid remaining in the microsomal incubation was not significantly different between nondiabetic and diabetic liver samples, whereas the concentration of atorvastatin lactone was significantly higher in the samples from diabetic donors. In vitro studies, using recombinant enzymes, revealed that cytochrome P450 (CYP) 3A4 is the major CYP enzyme responsible for the biotransformation of atorvastatin lactone. CONCLUSIONS These studies provide compelling evidence that the clearance of atorvastatin lactone is significantly reduced by diabetes, which leads to an increased concentration of this metabolite. This finding can be clinically valuable for diabetic transplant recipients who have additional co-morbidities and are on multiple medications.


Therapeutic Drug Monitoring | 2013

Inosine monophosphate dehydrogenase expression and activity are significantly lower in kidney transplant recipients with diabetes mellitus.

Miroslav Dostalek; Reginald Y. Gohh; Fatemeh Akhlaghi

Background: Inosine 5′-monophosphate dehydrogenase (IMPDH) is a target of the immunosuppressive drug, mycophenolic acid (MPA). A 12-hour clinical pharmacokinetic and pharmacodynamic study was conducted to compare IMPDH1 and IMPDH2 gene expression, IMPDHI and IMPDHII protein levels, and enzyme activity between kidney transplant recipients with respect to diabetes status. Methods: Nondiabetic (ND, n = 11) and diabetic (D, n = 9) kidney transplant recipients and on nontransplant nondiabetic (n = 10) and diabetic (n = 10) volunteers were included in the study. Results: Area under the effect curve values for gene expression: IMPDH1 [ND: 22.1 (13.8–31.3) versus D: 4.5 (2.3–6.5), P < 0.001] and IMPDH2 [ND: 15.3 (11.0–21.7) versus D: 6.1 (4.6–8.6), P < 0.001], protein level: IMPDHI [ND: 1.0 (0.5–1.3) versus 0.5 (0.4–0.7), P = 0.002] and IMPDHII [ND: 1.0 (0.6–1.6) versus D: 0.7 (0.6–0.8) P < 0.001] and enzyme activity [ND: 180 (105–245) versus D: 29.9 (15.3–35.6) µmole·s−1·mole−1 adenosine monophosphate, P < 0.001] was significantly lower in transplant recipients with diabetes. Similar results were observed in nontransplanted volunteers. Kinetic studies of MPA-mediated suppression of IMPDH activity in nontransplanted individuals revealed an approximately 2.5-fold lower half-maximum effective concentration (EC50) for diabetic as compared with nondiabetic [ND: 50.2 (49.8–50.7) versus D: 15.8 (15.6–16.3) nmole/L, P = 0.004] volunteers. This difference was not related to several IMPDH gene variants. Conclusions: This study indicates a significantly lower IMPDH gene expression, protein level, and enzyme activity in diabetic patients. Further clinical studies in a larger number of patients are warranted to verify whether MPA dosing must be optimized for kidney transplant recipients with diabetes mellitus.


Clinical Pharmacokinectics | 2012

Diabetes Mellitus Reduces the Clearance of Atorvastatin Lactone

Miroslav Dostalek; Wai-Johnn Sam; Komal R. Paryani; Joyce S. Macwan; Reginald Y. Gohh; Fatemeh Akhlaghi

Background and ObjectivePatients with diabetes mellitus might be at a higher risk of HMG-CoA reductase inhibitor (statin)-induced myotoxicity, possibly because of reduced clearance of the statin lactone. The present study was designed to investigate the effect of diabetes on the biotransformation of atorvastatin acid, both in vivo in nondiabetic and diabetic renal transplant recipients, and in vitro in human liver samples from nondiabetic and diabetic donors.Subjects and MethodsA total of 312 plasma concentrations of atorvastatin acid and atorvastatin lactone, from 20 nondiabetic and 32 diabetic renal transplant recipients, were included in the analysis. Nonlinear mixed-effects modelling was employed to determine the population pharmacokinetic estimates for atorvastatin acid and atorvastatin lactone. In addition, the biotransformation of these compounds was studied using human liver microsomal fractions obtained from 12 nondiabetic and 12 diabetic donors.ResultsIn diabetic patients, the plasma concentration of atorvastatin lactone was significantly higher than that of atorvastatin acid throughout the 24-hour sampling period. The optimal population pharmacokinetic model for atorvastatin acid and atorvastatin lactone consisted of a two- and one-compartment model, respectively, with interconversion between atorvastatin acid and atorvastatin lactone. Parent drug was absorbed orally with a population estimate first-order absorption rate constant of 0.457 h−1. The population estimates of apparent oral clearance (CL/F) of atorvastatin acid to atorvastatin lactone, intercompartmental clearance (Q/F), apparent central compartment volume of distribution after oral administration (V1/F) and apparent peripheral compartment volume of distribution after oral administration (V2/F) for atorvastatin acid were 231 L/h, 315 L/h, 325 L and 4910 L, respectively. The population estimates of apparent total clearance of atorvastatin lactone (CLM/F), apparent intercompartmental clearance of atorvastatin lactone (QM/F) and apparent volume of distribution of atorvastatin lactone after oral administration (VM/F) were 85.4 L/h, 166 L/h and 249 L, respectively. The final covariate model indicated that the liver enzyme lactate dehydrogenase was related to CL/F and alanine aminotransferase (ALT) was related to Q/F. Importantly, diabetic patients have 3.56 times lower CLM/F than nondiabetic patients, indicating significantly lower clearance of atorvastatin lactone in these patients. Moreover, in a multivariate population pharmacokinetics model, diabetes status was the only significant covariate predicting the values of the CLM/F. Correspondingly, the concentration of atorvastatin acid remaining in the microsomal incubation was not significantly different between nondiabetic and diabetic liver samples, whereas the concentration of atorvastatin lactone was significantly higher in the samples from diabetic donors. In vitro studies, using recombinant enzymes, revealed that cytochrome P450 (CYP) 3A4 is the major CYP enzyme responsible for the biotransformation of atorvastatin lactone.ConclusionsThese studies provide compelling evidence that the clearance of atorvastatin lactone is significantly reduced by diabetes, which leads to an increased concentration of this metabolite. This finding can be clinically valuable for diabetic transplant recipients who have additional co-morbidities and are on multiple medications.


Alcohol and Alcoholism | 2013

Insulin resistance, ceramide accumulation and endoplasmic reticulum stress in experimental chronic alcohol-induced steatohepatitis.

Teresa Ramirez; Lisa Longato; Miroslav Dostalek; Ming Tong; Jack R. Wands; Suzanne M. de la Monte


Metabolism of Drugs and Other Xenobiotics | 2012

St John's Wort (Hypericum Perforatum L.)

Miroslav Dostalek; Anna‐Katarina Stark

Collaboration


Dive into the Miroslav Dostalek's collaboration.

Top Co-Authors

Avatar

Fatemeh Akhlaghi

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Joyce S. Macwan

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ileana A. Ionita

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Komal R. Paryani

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar

Michael H. Court

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge