Miroslav P. Petrov
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miroslav P. Petrov.
2002 International Joint Power Generation Conference | 2002
Miroslav P. Petrov; Andrew Martin; Laszlo Hunyadi
The hybrid dual-fuel combined cycle concept is a promising technology for increasing the energy utilization of low-grade (solid) fuels. Advantages such as enhanced electrical efficiency, favorable economics, and relative ease of construction and operation have been pointed out by various authors in previous studies. The present investigation aims to assess the performance of natural gas and coal- or biomass-fired hybrid combined cycles, with a gas turbine as topping cycle and a steam boiler as bottoming cycle. A parametric analysis considers the impact of the natural gas/solid fuel energy ratio on the electrical efficiency of various hybrid system configurations. Results show that significant performance improvements (in the order of several percentage points in electrical efficiency) can be achieved by these hybrid configurations when compared to the reference (two independent, single-fuel power plants at the given scales). In large-scale power plants with coal-fired bottoming cycle, efficiencies continuously rise as the share of natural gas fuel is increased up to the cycle integration limits, while an optimum can be seen for the small-scale biomass-fired bottoming cycles (with modest steam parameters) at a certain share of natural gas fuel input.Copyright
Volume 2: Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues; Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes | 2013
Miroslav P. Petrov; Reza Arghandeh; Robert P. Broadwater
Distributed energy storage has been recognized as a valuable and often indispensable complement to small-scale power generation based on renewable energy sources. Small-scale energy storage positioned at the demand side would open the possibility for enhanced predictability of power output and easier integration of small-scale intermittent generators into functioning electricity markets, as well as offering inherent peak shaving abilities for mitigating contingencies and blackouts, for reducing transmission losses in local networks, profit optimization and generally allowing tighter utility control on renewable energy generation. Distributed energy storage at affordable costs and of low environmental footprint is a necessary prerequisite for the wider deployment of renewable energy and its deeper penetration into local networks.Thermodynamic energy storage in the form of compressed air is an alternative to electrochemical energy storage in batteries and has been evaluated in various studies and tested commercially on a large scale.Distributed compressed air energy storage (DCAES) systems in combination with renewable energy generators installed at residential homes, public or commercial buildings are a viable alternative to large-scale energy storage, moreover promising lower specific investment than batteries if a mass-market is established. Flexible control methods can be applied to DCAES units, resulting in a complex system running either independently for home power supply, or as a unified and centrally controlled utility-scale energy storage entity.This study aims at conceptualizing the plausible distributed compressed-air energy storage units, examining the feasibility for their practical implementation and analyzing their behavior, as well as devising the possible control strategies for optimal utilization of grid-integrated renewable energy sources at small scales. Results show that overall energy storage efficiency of around 70% can be achieved with comparatively simple solutions, offering less technical challenges and lower specific costs than comparable electrical battery systems. Furthermore, smart load management for improving the dispatchability can bring additional benefits by profit optimization and decrease the payback time substantially.Copyright
International Joint Power Generation Conference collocated with TurboExpo 2003 | 2003
Miroslav P. Petrov; Thomas Stenhede; Andrew Martin; Laszlo Hunyadi
Hybrid dual-fuel combined cycle power plants employ two or more different fuels (one of which is typically a solid fuel), utilized by two or more different prime movers with a thermal coupling in between. Major thermodynamic and economic advantages of hybrid combined cycle configurations have been pointed out by various authors in previous studies. The present investigation considers the performance of natural gas and biomass hybrid combined cycles in small scale, with an internal combustion engine as topping cycle and a steam boiler/turbine as bottoming cycle. A parametric analysis evaluates the impact of natural gas to biomass fuel energy ratio on the electrical efficiency of various hybrid configurations. Results show that significant performance improvements with standard technology can be achieved by these hybrid configurations when compared to the reference (two independent, single-fuel power plants at the relevant scales). Electrical efficiency of natural gas energy conversion can reach up to 57–58% LHV, while the efficiency attributed to the bottoming fuel rises with up to 4 percentage points. In contrast to hybrid cycles with gas turbines as topping cycle, hybrid configurations with internal combustion engines show remarkably similar performance independent of type of configuration, at low shares of natural gas fuel input.Copyright
Volume 2: Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues; Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes | 2013
Marianne Salomon Popa; Miroslav P. Petrov; Anjaneyulu Krothapalli
Solar thermal energy and biomass fuels are often available at locations where they can benefit from combined hybrid energy utilization methods for the generation of electricity, representing suitable and advantageous integration alternatives. The feasibility of concentrating solar power (CSP) systems depends on cost limitations, desired installed power capacity and direct solar insolation, where smaller scales and low-cost solutions can often be preferred to large-scale investment-intensive installations. Biomass residues of various types, on the other hand, can be considered as proven fuels for small-to-midscale utility or industry based power or cogen arrangements and utilized through various technologies. The thermodynamic integration between a biomass fired power plant and a CSP unit can help to significantly increase the availability of the plant, improve its partial load characteristics, compensate for the intermittency of the solar energy resource while preserving the purely renewable profile of the generated electricity, and at the same time showing better overall performance when compared to two separate plants while avoiding the need for costly energy storage solutions.Biomass fuels can help reach better steam conditions in a steam plant based on CSP-generated steam, and thus improve the efficiency of energy conversion for the integrated hybrid system if compared with two individual single-fuel power units. In this study, an overview of feasible solar-biomass integration concepts is presented. A deeper thermoeconomic analysis of a selected integrated utility-scale biomass and CSP electricity generation plant is attempted, with certain simplifications. Furthermore, a multiobjective optimization strategy is regarded as very necessary and thus included in the analysis, where several major environmental aspects plus the cost of electricity are involved and defined in terms of desired parameters and conditions representative to Central Europe and Southeastern United States. The results are compared with conventional power generation alternatives. On that basis, a low-parameter CSP solution integrated with conventional biomass-fired combustion unit, where solar-generated steam is being superheated by the biomass fuel, has been chosen as the focus of the analysis in this study.Copyright
Volume 2: Reliability, Availability and Maintainability (RAM); Plant Systems, Structures, Components and Materials Issues; Simple and Combined Cycles; Advanced Energy Systems and Renewables (Wind, Solar and Geothermal); Energy Water Nexus; Thermal Hydraulics and CFD; Nuclear Plant Design, Licensing and Construction; Performance Testing and Performance Test Codes | 2013
Miroslav P. Petrov
High-speed alternators are believed to be well developed nowadays, following the improvement in performance and decrease of costs for electronic power converters and permanent magnet materials. Their compact design and their ability to vary the rotational speed in off-design conditions promise superior performance when compared to conventional generators. High-speed alternators are only available in limited sizes for small-scale applications, whereas improvements in efficiency and optimized part-load behavior are particularly important especially for small-scale electricity generation.Enhanced energy utilization for electricity production by small utility plants or by distributed units located at private homes or commercial buildings, based on thermodynamic cycles powered by natural gas or various renewable energy sources, is possible to be achieved through a wider application of grid-integrated high-speed technology. This study presents a critical review of previous research and demonstration work on high-speed electrical machines and a summary of the technical challenges limiting their performance and their expansion into larger sizes. Conclusions are drawn for finding appropriate solutions for practical high-speed electricity generation units and their readiness for a much wider deployment.Closer analysis is attempted on the thermal and mechanical integrity of high-speed alternators and the technical challenges that slow down their scale-up to MW-size units for utility applications. The necessary research and development work that needs to be done in the near future is outlined and discussed herein.Copyright
20th International Conference on Nuclear Engineering collocated with the ASME 2012 Power Conference, Anaheim CA, USA, July 30 - August 3, 2012 | 2012
Miroslav P. Petrov; Jens Fridh; Torsten Fransson
Energy utilization from low-grade fuels of either fossil or renewable origin, or from medium-temperature heat sources such as solar, industrial waste heat, or small nuclear reactors, for small-scale power generation via steam cycles, can be reasonably enhanced by a simple technology shift. This study evaluates the technical feasibility of a compact power generation package comprising a steam turbine directly coupled to a high-speed alternator delivering around 8–12 MW of electrical power. Commercial or research-phase high-speed electrical generators at MW-scale are reviewed, and a basic thermodynamic design and flow-path analysis of a steam turbine able to drive such a generator is attempted.High-speed direct drives are winning new grounds due to their abilities to be speed-controlled and to avoid the gearbox otherwise typical for small system drivetrains. These two features may offer a reasonable advantage to conventional drives in terms of higher reliability and better economy.High-speed alternators with related power electronics are nowadays becoming increasingly available for the MW-size market. A generic 8 to 12 MW synchronous alternator running respectively at 15,000 to 10,000 rpm, have been used as a reference for evaluating the fundamental design of a directly coupled steam turbine prime mover.The moderate steam parameter concept suits well for converting mid-temperature thermal energy into electrical power with the help of low-tech steam cycles, allowing for distributed electricity production at reasonable costs and efficiency. Steam superheat temperatures below 350°C (660°F) at pressures of maximum 20 bar would keep the steam volumetric flow sufficiently high in order to restrain the turbine losses typical for small-scale turbines, while helping also with simpler certification and safety procedures and using primarily established technology and standard components. The proposed steam turbines designs and their characteristics thereof have been evaluated by computer simulations using the in-house code ProSteam and its sub-procedures AXIAL and VaxCalc, by courtesy of Siemens Industrial Turbomachinery and its steam turbine division located in Finspong, Sweden.The first results from this study show that high-speed steam turbines of the proposed size and type are possible to design and manufacture based on conventional components, and can be expected to deliver a very satisfactory performance at variable power output.Copyright
Energy for Sustainable Development | 2011
Seksan Udomsri; Miroslav P. Petrov; Andrew Martin; Torsten Fransson
World Renewable Energy Forum, WREF 2012, Including World Renewable Energy Congress XII and Colorado Renewable Energy Society (CRES) Annual Conference, 13 May 2012 through 17 May 2012, Denver, CO | 2012
Miroslav P. Petrov; Marianne Salomon Popa; Torsten Fransson
5th International Conference on Sustainable Energy & Environmental Protection (SEEP 2012), Dublin City University, Dublin 5-8 June 2012 | 2012
M. Salomon; Miroslav P. Petrov; Anjaneyulu Krothapalli; B. Greska
Svenska Mekanisters Riksförening 2002:2, sid 14-17 | 2002
Jens Fridh; Miroslav P. Petrov; Marianne Salomon Popa; Laszlo Hunyadi; Andrew Martin; Torsten Fransson