Miroslava Opekarová
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miroslava Opekarová.
Biochimica et Biophysica Acta | 2003
Miroslava Opekarová; Widmar Tanner
Membrane proteins are mostly protein-lipid complexes. For more than 30 examples of membrane proteins from prokaryotes, yeast, plant and mammals, the importance of phospholipids and sterols for optimal activity is documented. All crystallized membrane protein complexes show defined lipid-protein contacts. In addition, lipid requirements may also be transitory and necessary only for correct folding and intercellular transport. With respect to specific lipid requirements of membrane proteins, the phospholipid and glycolipid as well as the sterol content of the host cell chosen for heterologous expression should be carefully considered. The lipid composition of bacteria, archaea, yeasts, insects,Xenopus oocytes, and typical plant and mammalian cells are given in this review. A few examples of heterologous expression of membrane proteins, where problems of specific lipid requirements have been noticed or should be thought of, have been chosen.
The EMBO Journal | 2007
Guido Grossmann; Miroslava Opekarová; Jan Malinsky; Ina Weig-Meckl; Widmar Tanner
The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non‐overlapping sub‐compartments can be visualized. The first one, represented by a network‐like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300‐nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H+‐symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).
Journal of Cell Biology | 2008
Guido Grossmann; Jan Malinsky; Wiebke Stahlschmidt; Martin Loibl; Ina Weig-Meckl; Wolf B. Frommer; Miroslava Opekarová; Widmar Tanner
In this study, we investigate whether the stable segregation of proteins and lipids within the yeast plasma membrane serves a particular biological function. We show that 21 proteins cluster within or associate with the ergosterol-rich membrane compartment of Can1 (MCC). However, proteins of the endocytic machinery are excluded from MCC. In a screen, we identified 28 genes affecting MCC appearance and found that genes involved in lipid biosynthesis and vesicle transport are significantly overrepresented. Deletion of Pil1, a component of eisosomes, or of Nce102, an integral membrane protein of MCC, results in the dissipation of all MCC markers. These deletion mutants also show accelerated endocytosis of MCC-resident permeases Can1 and Fur4. Our data suggest that release from MCC makes these proteins accessible to the endocytic machinery. Addition of arginine to wild-type cells leads to a similar redistribution and increased turnover of Can1. Thus, MCC represents a protective area within the plasma membrane to control turnover of transport proteins.
Journal of Cell Science | 2004
Katerina Malínská; Jan Malinsky; Miroslava Opekarová; Widmar Tanner
Recently, lipid-raft-based subdomains within the plasma membrane of living Saccharomyces cerevisiae cells were visualized using green fluorescent protein fusions, and non-overlapping subdomains containing either Pma1p or Can1p were distinguished. In this study, the long-term stability of the subdomains was investigated. Experiments with latrunculin A and nocodazole ruled out the involvement of cytoskeletal components in the stabilization of the subdomains. Also a putative role of the cell wall was excluded, because protoplasting of the cells changed neither the pattern nor the stability of the subdomains. By contrast, the expected inner dynamics of the membrane subdomains was documented by FRAP experiments. Finally, two other proteins were localized within the frame of the Can1p/Pma1p plasma-membrane partition. We show that Fur4p (another H+ symporter) and Sur7p (a protein of unknown function) occupy the Can1p subdomain.
Annual Review of Plant Biology | 2013
Jan Malinsky; Miroslava Opekarová; Guido Grossmann; Widmar Tanner
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Biochimica et Biophysica Acta | 1981
Karel Sigler; A. Kotyk; A. Knotková; Miroslava Opekarová
The high pH-maintaining capacity of yeast suspension after glucose-induced acidification, measured as its ability to neutralize added alkali, was found to be due mainly to actively extruded acidity (H+). The buffering action of passively excreted metabolites (CO2, organic acids) and cell surface polyelectrolytes contributed only 15--40% to the overall pH-maintaining capacity which was 10 mmol NaOH/l per pH unit between pH 3 and 4 and 3.5 nmol NaOH/l per pH unit between pH 4 and 7. The buffering capacity of yeast cell-free extract was still higher (up to 4.5-times) than that of glucose-supplied cell suspension; addition of glucose to the extract thus produced considerable titratable acidity but negligible net acidity. The glucose-induced acidification of yeast suspension was stimulated by univalent cations in the sequence K+ greater than Rb+ much greater than Li+ congruent to Cs+ congruent to Na+. The processes participating in the acidification and probably also in the creation of extracellular buffering capacity include excretion of CO2 and organic acids, net extrusion of H+ and K+ (in K+-free media; in K+-containing media this is preceded by an initial rapid K+ uptake), and movements of some anions (phosphate, chlorides). The overall process appears to be electrically silent.
Eukaryotic Cell | 2006
Guido Grossmann; Miroslava Opekarová; Linda Nováková; Jürgen Stolz; Widmar Tanner
ABSTRACT The hexose-proton symporter HUP1 shows a spotty distribution in the plasma membrane of the green alga Chlorella kessleri. Chlorella cannot be transformed so far. To study the membrane localization of the HUP1 protein in detail, the symporter was fused to green fluorescent protein (GFP) and heterologously expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. In these organisms, the HUP1 protein has previously been shown to be fully active. The GFP fusion protein was exclusively targeted to the plasma membranes of both types of fungal cells. In S. cerevisiae, it was distributed nonhomogenously and concentrated in spots resembling the patchy appearance observed previously for endogenous H+ symporters. It is documented that the Chlorella protein colocalizes with yeast proteins that are concentrated in 300-nm raft-based membrane compartments. On the other hand, it is completely excluded from the raft compartment housing the yeast H+/ATPase. As judged by their solubilities in Triton X-100, the HUP1 protein extracted from Chlorella and the GFP fusion protein extracted from S. cerevisiae are detergent-resistant raft proteins. S. cerevisiae mutants lacking the typical raft lipids ergosterol and sphingolipids showed a homogenous distribution of HUP1-GFP within the plasma membrane. In an ergosterol synthesis (erg6) mutant, the rate of glucose uptake was reduced to less than one-third that of corresponding wild-type cells. In S. pombe, the sterol-rich plasma membrane domains can be stained in vivo with filipin. Chlorella HUP1-GFP accumulated exactly in these domains. Altogether, it is demonstrated here that a plant membrane protein has the property of being concentrated in specific raft-based membrane compartments and that the information for its raft association is retained between even distantly related organisms.
Yeast | 2010
Jan Malinsky; Miroslava Opekarová; Widmar Tanner
The plasma membrane of Saccharomyces cerevisiae contains large microdomains enriched in ergosterol, which house at least nine integral proteins, including proton symporters. The domains adopt a characteristic structure of furrow‐like invaginations typically seen in freeze‐fracture pictures of fungal cells. Being stable for the time comparable with the cell cycle duration, they might be considered as fixed islands (rafts) in an otherwise fluid yeast plasma membrane. Rapidly moving endocytic marker proteins avoid the microdomains; the domain‐accumulated proton symporters consequently show a reduced rate of substrate‐induced endocytosis and turnover. Copyright
The Plant Cell | 2011
Widmar Tanner; Jan Malinsky; Miroslava Opekarová
Membrane rafts or lipid rafts were first postulated to explain the difference in plasma membrane organization of polarized epithelial cells and differential targeting of lipids and proteins to their apical and baso-lateral sides ([Simons and van Meer, 1988][1]; [Brown and Rose, 1992][2]). Rafts,
Biochimica et Biophysica Acta | 2002
Miroslava Opekarová; Ingrid Robl; Widmar Tanner
In continuation of our previous study, we show that phosphatidyl ethanolamine (PE) depletion affects, in addition to amino acid transporters, activities of at least two other proton motive force (pmf)-driven transporters (Ura4p and Mal6p). For Can1p, we demonstrate that the lack of PE results in a failure of the permease targeting to plasma membrane. Despite the pleiotropic effect of PE depletion, a specific role of PE in secretion of a defined group of permeases can be distinguished. Pmf-driven transporters are more sensitive to the lack of PE than other plasma membrane proteins.