Miroslaw Maluszynski
University of Silesia in Katowice
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Miroslaw Maluszynski.
Plant Biotechnology Journal | 2016
Guillermina M. Mendiondo; Daniel J. Gibbs; Miriam Szurman-Zubrzycka; Arnd Korn; Julietta Marquez; Iwona Szarejko; Miroslaw Maluszynski; John R. King; Barry Axcell; Katherine A. Smart; Françoise Corbineau; Michael J. Holdsworth
Summary Increased tolerance of crops to low oxygen (hypoxia) during flooding is a key target for food security. In Arabidopsis thaliana (L.) Heynh., the N‐end rule pathway of targeted proteolysis controls plant responses to hypoxia by regulating the stability of group VII ethylene response factor (ERFVII) transcription factors, controlled by the oxidation status of amino terminal (Nt)‐cysteine (Cys). Here, we show that the barley (Hordeum vulgare L.) ERFVII BERF1 is a substrate of the N‐end rule pathway in vitro. Furthermore, we show that Nt‐Cys acts as a sensor for hypoxia in vivo, as the stability of the oxygen‐sensor reporter protein MCGGAIL‐GUS increased in waterlogged transgenic plants. Transgenic RNAi barley plants, with reduced expression of the N‐end rule pathway N‐recognin E3 ligase PROTEOLYSIS6 (HvPRT6), showed increased expression of hypoxia‐associated genes and altered seed germination phenotypes. In addition, in response to waterlogging, transgenic plants showed sustained biomass, enhanced yield, retention of chlorophyll, and enhanced induction of hypoxia‐related genes. HvPRT6 RNAi plants also showed reduced chlorophyll degradation in response to continued darkness, often associated with waterlogged conditions. Barley Targeting Induced Local Lesions IN Genomes (TILLING) lines, containing mutant alleles of HvPRT6, also showed increased expression of hypoxia‐related genes and phenotypes similar to RNAi lines. We conclude that the N‐end rule pathway represents an important target for plant breeding to enhance tolerance to waterlogging in barley and other cereals.
Mutation Research | 2012
Marzena Kurowska; Anna Labocha-Pawłowska; Dominika Gnizda; Miroslaw Maluszynski; Iwona Szarejko
We present studies aimed at determining the types and frequencies of mutations induced in the barley genome after treatment with chemical (N-methyl-N-nitrosourea, MNU) and physical (gamma rays) mutagens. We created M(2) populations of a doubled haploid line and used them for the analysis of mutations in targeted DNA sequences and over an entire barley genome using TILLING (Targeting Induced Local Lesions in Genomes) and AFLP (Amplified Fragment Length Polymorphism) technique, respectively. Based on the TILLING analysis of the total DNA sequence of 4,537,117bp in the MNU population, the average mutation density was estimated as 1/504kb. Only one nucleotide change was found after an analysis of 3,207,444bp derived from the highest dose of gamma rays applied. MNU was clearly a more efficient mutagen than gamma rays in inducing point mutations in barley. The majority (63.6%) of the MNU-induced nucleotide changes were transitions, with a similar number of G>A and C>T substitutions. The similar share of G>A and C>T transitions indicates a lack of bias in the repair of O(6)-methylguanine lesions between DNA strands. There was, however, a strong specificity of the nucleotide surrounding the O(6)-meG at the -1 position. Purines formed 81% of nucleotides observed at the -1 site. Scanning the barley genome with AFLP markers revealed ca. a three times higher level of AFLP polymorphism in MNU-treated as compared to the gamma-irradiated population. In order to check whether AFLP markers can really scan the whole barley genome for mutagen-induced polymorphism, 114 different AFLP products, were cloned and sequenced. 94% of bands were heterogenic, with some bands containing up to 8 different amplicons. The polymorphic AFLP products were characterised in terms of their similarity to the records deposited in a GenBank database. The types of sequences present in the polymorphic bands reflected the organisation of the barley genome.
Journal of Applied Genetics | 2011
Damian Gruszka; Iwona Szarejko; Miroslaw Maluszynski
The aim of these studies was to characterize nucleotide substitutions leading to the phenotype of brassinosteroid-insensitive, semi-dwarf barley mutant 093AR. Two substitutions in the sequence of barley HvBRI1 gene, encoding leucine-rich repeats receptor kinase (LRR-RK), which participates in brassinosteroid (BR) signalling, were identified in this chemically-induced barley mutant of the cv. Aramir. The LRR-RK is a transmembrane protein phosphorylating downstream components. The identified substitutions CC>AA at positions 1760 and 1761 in the HvBRI1 gene of this mutant led to a missense mutation, causing the Thr-573 to Lys-573 replacement in the protein sequence. The threonine residue is situated in the distal part of a 70-amino acids island responsible for binding of BR molecules. As this residue is conserved among BRI1 protein homologs in Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Hordeum vulgare, it was postulated that this residue is crucial for the protein function. The genetic analyses indicated that the mutant 093AR was allelic to the spontaneous, semi-dwarf mutant uzu which carries A>G substitution at position 2612 of the HvBRI1 gene (GenBank acc. no. AB088206). A comparison of the genomic sequence of HvBRI1 in the mutants uzu, 093AR and in the cv. ‘Aramir’ confirmed the presence of the single-nucleotide A>G substitution at position 2612 in the sequence encoding kinase domain of HvBRI1 polypeptide in uzu, but not in 093AR mutant, indicating that a new allele of the HvBRI1 gene was identified.
Plant Growth Regulation | 2011
Damian Gruszka; Iwona Szarejko; Miroslaw Maluszynski
Brassinosteroids (BR) are plant steroid hormones regulating various aspects of morphogenesis, such as seed development and germination, cell division and elongation, differentiation of tracheary elements, development during growth in darkness (skotomorphogenesis), photosynthesis and response to environmental stress. Brassinosteroid synthesis has been studied to a great extent in the dicot species, Arabidopsis thaliana, resulting in the identification of genes participating in this process. Much less is known about BR synthesis in crops, including the monocots. The purpose of this study was to identify and characterize barley coding sequence HvDWARF involved in brassinosteroid synthesis. This sequence, encoding brassinosteroid-6-oxidase, was identified on the basis of barley ESTs. This sequence was screened for nucleotide substitutions in semi-dwarf, chemically-induced barley mutants exhibiting changes in etiolation. The responsiveness of these genotypes to exogenous brassinosteroids was determined with the use of leaf-blade segment unrolling tests. The semi-dwarf phenotype of the BR-deficient mutants was rescued by the application of 10−5 M 24-epi-brassinolide. Two missense mutations were identified within the HvDWARF sequence in BR-deficient mutants 522DK and 527DK from variety ‘Delisa’. These substitutions cause changes of amino acid residues located within the conserved fragments of the encoded polypeptide. The transcription profile of HvDWARF and HvBAK1/SERK3, involved in BR signaling, was determined during the early stages of seedling development in BR-deficient and BR-insensitive mutants using real-time quantitative PCR. This analysis indicated that HvDWARF displays a uniformly low level of this process, whereas the transcription level of HvBAK1 proved to be spatially and temporally regulated.
Plant Molecular Biology | 2013
Agata Daszkowska-Golec; Weronika Wojnar; Marta Rosikiewicz; Iwona Szarejko; Miroslaw Maluszynski; Zofia Szweykowska-Kulinska; Artur Jarmolowski
Although the importance of abscisic acid (ABA) in plant development and response to abiotic and biotic stresses is well recognized, the molecular basis of the signaling pathway has not been fully elucidated. Mutants in genes related to ABA are widely used as a tool for gaining insight into the mechanisms of ABA signal transduction and ABA-dependent stress response. We used a genetic approach of a suppressor screening in order to decipher the interaction between ABH1 (CBP80) and other components of ABA signaling. ABH1 (CBP80) encodes a large subunit of CBC (CAP BINDING COMPLEX) and the abh1 mutant is drought-tolerant and hypersensitive to ABA during seed germination. The suppressor mutants of abh1 were generated after chemical mutagenesis. The mutant named soa1 (suppressor of abh1 hypersensitivity to ABA 1) displayed an ABA-insensitive phenotype during seed germination. The genetic analysis showed that the soa1 phenotype is dominant in relation to abh1 and segregates as a single locus. Based on soa1’s response to a wide spectrum of physiological assays during different stages of development, we used the candidate-genes approach in order to identify a suppressor gene. The molecular analysis revealed that mutation causing the phenotype of soa1 occurred in the ABI4 (ABA insensitive 4) gene. Analysis of pre-miR159 expression, whose processing depends on CBC, as well as targets of miR159: MYB33 and MYB101, which are positive regulators of ABA signaling, revealed a possible link between CBP80 (ABH1) and ABI4 presented here.
International Journal of Molecular Sciences | 2016
Damian Gruszka; Malgorzata Gorniak; Ewelina Glodowska; Ewa Wierus; Jana Oklestkova; Anna Janeczko; Miroslaw Maluszynski; Iwona Szarejko
Brassinosteroids (BRs) are plant steroid hormones, regulating a broad range of physiological processes. The largest amount of data related with BR biosynthesis has been gathered in Arabidopsis thaliana, however understanding of this process is far less elucidated in monocot crops. Up to now, only four barley genes implicated in BR biosynthesis have been identified. Two of them, HvDWARF and HvBRD, encode BR-6-oxidases catalyzing biosynthesis of castasterone, but their relation is not yet understood. In the present study, the identification of the HvDWARF genomic sequence, its mutational and functional analysis and characterization of new mutants are reported. Various types of mutations located in different positions within functional domains were identified and characterized. Analysis of their impact on phenotype of the mutants was performed. The identified homozygous mutants show reduced height of various degree and disrupted skotomorphogenesis. Mutational analysis of the HvDWARF gene with the “reverse genetics” approach allowed for its detailed functional analysis at the level of protein functional domains. The HvDWARF gene function and mutants’ phenotypes were also validated by measurement of endogenous BR concentration. These results allowed a new insight into the BR biosynthesis in barley.
DNA Repair | 2015
Magdalena Stolarek; Damian Gruszka; Agnieszka Braszewska-Zalewska; Miroslaw Maluszynski
Genome integrity is constantly challenged by endo- and exogenous DNA-damaging factors. The influence of genotoxic agents causes an accumulation of DNA lesions, which if not repaired, become mutations that can cause various abnormalities in a cell metabolism. The main pathway of DSB repair, which is based on non-homologous recombination, is canonical non-homologous end joining (C-NHEJ). It has been shown that this mechanism is highly conserved in both Pro- and Eukaryotes. The mechanisms that underlie DSB repair through C-NHEJ have mainly been investigated in mammalian systems, and therefore our knowledge about this process is much more limited as far as plants, and crop plants in particular, are concerned. Recent studies have demonstrated that PARP3 is an important response factor to the presence of DSB in a genome. The aims of this study were to identify the sequence of the barley PARP3 gene, to perform a mutational analysis of the sequence that was identified using the TILLING (Targeting Induced Local Lesions IN Genomes) method and to phenotype the mutants that were identified through their exposure to mutagenic treatment with the DSB-inducing chemical--bleomycin. A functional analysis led to the identification of a series of parp3 alleles. The mutants were characterized using several different approaches, including quantifying the DSB and γH2AX foci, which validated the function of the HvPARP3 gene in DSB repair in barley. The potential involvement of the HvPARP3 gene in the regulation of telomere length in barley was also analyzed.
International Journal of Molecular Sciences | 2013
Agata Daszkowska-Golec; Edyta Chorazy; Miroslaw Maluszynski; Iwona Szarejko
Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1) insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2) and soa3 (suppressor of abh1 hypersensitivity to ABA 3). Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1) in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress.
Archive | 2017
Iwona Szarejko; Miriam Szurman-Zubrzycka; Malgorzata Nawrot; Marek Marzec; Damian Gruszka; Marzena Kurowska; Beata Chmielewska; Justyna Zbieszczyk; Janusz Jelonek; Miroslaw Maluszynski
Since the development of the Targeting Induced Local Lesions in Genome (TILLING) strategy, it has been applied in both plants and animals in many studies. The creation of an appropriate population is the first and most crucial step of TILLING. The goal is to obtain a highly mutagenized population that allows many mutations in any gene of interest to be found. Therefore, an effective method of mutation induction should be developed. A high mutation density is associated with saving time, costs, and the labor required for the development of a TILLING platform. The proper handling of the mutated generations, the establishment of a seed bank, and the development of a DNA library are essential for creating a TILLING population. The database in which all of the data from the molecular and phenotypic analyses are collected is a very useful tool for maintaining such population. Once developed, a TILLING population can serve as a renewable resource of mutations for research that uses both forward and reverse genetic approaches. In this chapter, we describe the methods for the development and maintenance of a TILLING population in barley.
Frontiers in Plant Science | 2018
Miriam Szurman-Zubrzycka; Justyna Zbieszczyk; Marek Marzec; Janusz Jelonek; Beata Chmielewska; Marzena Kurowska; Milena Krok; Agata Daszkowska-Golec; Justyna Guzy-Wróbelska; Damian Gruszka; Monika Gajecka; Patrycja Gajewska; Magdalena Stolarek; Piotr Tylec; Paweł Sega; Sabina Lip; Monika Kudełko; Magdalena Lorek; Małgorzata Gorniak-Walas; Anna Malolepszy; Nina Podsiadlo; Katarzyna Szyrajew; Anete Keisa; Zodwa Mbambo; Elena Todorowska; Marek Gaj; Zygmunt Nita; Wanda Orlowska-Job; Miroslaw Maluszynski; Iwona Szarejko
TILLING (Targeting Induced Local Lesions IN Genomes) is a strategy used for functional analysis of genes that combines the classical mutagenesis and a rapid, high-throughput identification of mutations within a gene of interest. TILLING has been initially developed as a discovery platform for functional genomics, but soon it has become a valuable tool in development of desired alleles for crop breeding, alternative to transgenic approach. Here we present the HorTILLUS (Hordeum—TILLING—University of Silesia) population created for spring barley cultivar “Sebastian” after double-treatment of seeds with two chemical mutagens: sodium azide (NaN3) and N-methyl-N-nitrosourea (MNU). The population comprises more than 9,600 M2 plants from which DNA was isolated, seeds harvested, vacuum-packed, and deposited in seed bank. M3 progeny of 3,481 M2 individuals was grown in the field and phenotyped. The screening for mutations was performed for 32 genes related to different aspects of plant growth and development. For each gene fragment, 3,072–6,912 M2 plants were used for mutation identification using LI-COR sequencer. In total, 382 mutations were found in 182.2 Mb screened. The average mutation density in the HorTILLUS, estimated as 1 mutation per 477 kb, is among the highest mutation densities reported for barley. The majority of mutations were G/C to A/T transitions, however about 8% transversions were also detected. Sixty-one percent of mutations found in coding regions were missense, 37.5% silent and 1.1% nonsense. In each gene, the missense mutations with a potential effect on protein function were identified. The HorTILLUS platform is the largest of the TILLING populations reported for barley and best characterized. The population proved to be a useful tool, both in functional genomic studies and in forward selection of barley mutants with required phenotypic changes. We are constantly renewing the HorTILLUS population, which makes it a permanent source of new mutations. We offer the usage of this valuable resource to the interested barley researchers on cooperative basis.