Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mirsada Causevic is active.

Publication


Featured researches published by Mirsada Causevic.


Archives of General Psychiatry | 2010

Association of Plasma Clusterin Concentration With Severity, Pathology, and Progression in Alzheimer Disease

Madhav Thambisetty; Andrew Simmons; Latha Velayudhan; Abdul Hye; James J. Campbell; Yi Zhang; Lars Olof Wahlund; Eric Westman; Anna Kinsey; Andreas Güntert; Petroula Proitsi; John Powell; Mirsada Causevic; Richard Killick; Katie Lunnon; Steven Lynham; Martin Broadstock; Fahd Choudhry; David R. Howlett; Robert J. Williams; Sally I. Sharp; Cathy Mitchelmore; Catherine Tunnard; Rufina Leung; Catherine Foy; Darragh O'Brien; Gerome Breen; Simon J. Furney; Malcolm Ward; Iwona Kloszewska

CONTEXT Blood-based analytes may be indicators of pathological processes in Alzheimer disease (AD). OBJECTIVE To identify plasma proteins associated with AD pathology using a combined proteomic and neuroimaging approach. DESIGN Discovery-phase proteomics to identify plasma proteins associated with correlates of AD pathology. Confirmation and validation using immunodetection in a replication set and an animal model. SETTING A multicenter European study (AddNeuroMed) and the Baltimore Longitudinal Study of Aging. PARTICIPANTS Patients with AD, subjects with mild cognitive impairment, and healthy controls with standardized clinical assessments and structural neuroimaging. MAIN OUTCOME MEASURES Association of plasma proteins with brain atrophy, disease severity, and rate of clinical progression. Extension studies in humans and transgenic mice tested the association between plasma proteins and brain amyloid. RESULTS Clusterin/apolipoprotein J was associated with atrophy of the entorhinal cortex, baseline disease severity, and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater fibrillar amyloid-beta burden in the medial temporal lobe. Subjects with AD had increased clusterin messenger RNA in blood, but there was no effect of single-nucleotide polymorphisms in the gene encoding clusterin with gene or protein expression. APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin, as well as amyloid and clusterin colocalization in plaques. CONCLUSIONS These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of AD.


Biochemical and Biophysical Research Communications | 2009

Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice.

Richard Killick; Georgie Scales; Karelle Leroy; Mirsada Causevic; Claudie Hooper; Elaine E. Irvine; Agharul I. Choudhury; Laura Drinkwater; Fiona Kerr; Hind Al-Qassab; John Stephenson; Zehra Yilmaz; K. Peter Giese; Jean Pierre Brion; Dominic J. Withers; Simon Lovestone

As impaired insulin signalling (IIS) is a risk factor for Alzheimer’s disease we crossed mice (Tg2576) over-expressing human amyloid precursor protein (APP), with insulin receptor substrate 2 null (Irs2−/−) mice which develop insulin resistance. The resulting Tg2576/Irs2−/− animals had increased tau phosphorylation but a paradoxical amelioration of Aβ pathology. An increase of the Aβ binding protein transthyretin suggests that increased clearance of Aβ underlies the reduction in plaques. Increased tau phosphorylation correlated with reduced tau-phosphatase PP2A, despite an inhibition of the tau-kinase glycogen synthase kinase-3. Our findings demonstrate that disruption of IIS in Tg2576 mice has divergent effects on pathological processes—a reduction in aggregated Aβ but an increase in tau phosphorylation. However, as these effects are accompanied by improvement in behavioural deficits, our findings suggest a novel protective effect of disrupting IRS2 signalling in AD which may be a useful therapeutic strategy for this condition.


Molecular Psychiatry | 2014

Clusterin regulates β-amyloid toxicity via Dickkopf-1-driven induction of the wnt–PCP–JNK pathway

Richard Killick; Elena M. Ribe; Raya Al-Shawi; Bilal Malik; Claudie Hooper; Cathy Fernandes; Richard Dobson; Nolan Pm; Anbarasu Lourdusamy; Simon J. Furney; Kuang Lin; Gerome Breen; Richard Wroe; Alvina W.M. To; Karelle Leroy; Mirsada Causevic; Alessia Usardi; Robinson M; Wendy Noble; Richard Williamson; Katie Lunnon; Stuart Kellie; Christopher Hugh Reynolds; Chantal Bazenet; Angela Hodges; Jean Pierre Brion; John Stephenson; Simons Jp; Simon Lovestone

Although the mechanism of Aβ action in the pathogenesis of Alzheimer’s disease (AD) has remained elusive, it is known to increase the expression of the antagonist of canonical wnt signalling, Dickkopf-1 (Dkk1), whereas the silencing of Dkk1 blocks Aβ neurotoxicity. We asked if clusterin, known to be regulated by wnt, is part of an Aβ/Dkk1 neurotoxic pathway. Knockdown of clusterin in primary neurons reduced Aβ toxicity and DKK1 upregulation and, conversely, Aβ increased intracellular clusterin and decreased clusterin protein secretion, resulting in the p53-dependent induction of DKK1. To further elucidate how the clusterin-dependent induction of Dkk1 by Aβ mediates neurotoxicity, we measured the effects of Aβ and Dkk1 protein on whole-genome expression in primary neurons, finding a common pathway suggestive of activation of wnt–planar cell polarity (PCP)–c-Jun N-terminal kinase (JNK) signalling leading to the induction of genes including EGR1 (early growth response-1), NAB2 (Ngfi-A-binding protein-2) and KLF10 (Krüppel-like factor-10) that, when individually silenced, protected against Aβ neurotoxicity and/or tau phosphorylation. Neuronal overexpression of Dkk1 in transgenic mice mimicked this Aβ-induced pathway and resulted in age-dependent increases in tau phosphorylation in hippocampus and cognitive impairment. Furthermore, we show that this Dkk1/wnt–PCP–JNK pathway is active in an Aβ-based mouse model of AD and in AD brain, but not in a tau-based mouse model or in frontotemporal dementia brain. Thus, we have identified a pathway whereby Aβ induces a clusterin/p53/Dkk1/wnt–PCP–JNK pathway, which drives the upregulation of several genes that mediate the development of AD-like neuropathologies, thereby providing new mechanistic insights into the action of Aβ in neurodegenerative diseases.


PLOS ONE | 2011

Plasma Biomarkers of Brain Atrophy in Alzheimer's Disease

Madhav Thambisetty; Andrew Simmons; Abdul Hye; James F. Campbell; Eric Westman; Yi Zhang; Lars-Olof Wahlund; Anna Kinsey; Mirsada Causevic; Richard Killick; Iwona Kloszewska; Patrizia Mecocci; Hilkka Soininen; Magda Tsolaki; Bruno Vellas; Christian Spenger; Simon Lovestone

Peripheral biomarkers of Alzheimers disease (AD) reflecting early neuropathological change are critical to the development of treatments for this condition. The most widely used indicator of AD pathology in life at present is neuroimaging evidence of brain atrophy. We therefore performed a proteomic analysis of plasma to derive biomarkers associated with brain atrophy in AD. Using gel based proteomics we previously identified seven plasma proteins that were significantly associated with hippocampal volume in a combined cohort of subjects with AD (N = 27) and MCI (N = 17). In the current report, we validated this finding in a large independent cohort of AD (N = 79), MCI (N = 88) and control (N = 95) subjects using alternative complementary methods—quantitative immunoassays for protein concentrations and estimation of pathology by whole brain volume. We confirmed that plasma concentrations of five proteins, together with age and sex, explained more than 35% of variance in whole brain volume in AD patients. These proteins are complement components C3 and C3a, complement factor-I, γ-fibrinogen and alpha-1-microglobulin. Our findings suggest that these plasma proteins are strong predictors of in vivo AD pathology. Moreover, these proteins are involved in complement activation and coagulation, providing further evidence for an intrinsic role of these pathways in AD pathogenesis.


Journal of Biological Chemistry | 2011

Metalloprotease Meprin β Generates Nontoxic N-terminal Amyloid Precursor Protein Fragments in Vivo

Tamara Jefferson; Mirsada Causevic; Ulrich auf dem Keller; Oliver Schilling; Simone Isbert; Rebecca Geyer; Wladislaw Maier; Sabrina Tschickardt; Thorsten Jumpertz; Sascha Weggen; Judith S. Bond; Christopher M. Overall; Claus U. Pietrzik; Christoph Becker-Pauly

Identification of physiologically relevant substrates is still the most challenging part in protease research for understanding the biological activity of these enzymes. The zinc-dependent metalloprotease meprin β is known to be expressed in many tissues with functions in health and disease. Here, we demonstrate unique interactions between meprin β and the amyloid precursor protein (APP). Although APP is intensively studied as a ubiquitously expressed cell surface protein, which is involved in Alzheimer disease, its precise physiological role and relevance remain elusive. Based on a novel proteomics technique termed terminal amine isotopic labeling of substrates (TAILS), APP was identified as a substrate for meprin β. Processing of APP by meprin β was subsequently validated using in vitro and in vivo approaches. N-terminal APP fragments of about 11 and 20 kDa were found in human and mouse brain lysates but not in meprin β−/− mouse brain lysates. Although these APP fragments were in the range of those responsible for caspase-induced neurodegeneration, we did not detect cytotoxicity to primary neurons treated by these fragments. Our data demonstrate that meprin β is a physiologically relevant enzyme in APP processing.


Neuroscience Letters | 2010

β-Amyloid precursor protein and tau protein levels are differently regulated in human cerebellum compared to brain regions vulnerable to Alzheimer's type neurodegeneration.

Mirsada Causevic; Umbreen Farooq; Simon Lovestone; Richard Killick

It is well established that the human brain exhibits regional variability in its vulnerability to Alzheimers disease (AD) pathology. We set out to determine if this regional vulnerability is reflected in the expression pattern, or processing, of two key proteins involved in AD pathology, the β-amyloid precursor protein (APP) and tau, by immunoblotting. Our data demonstrate that APP processing and APP protein levels are not different between AD patients and healthy, age-matched subjects, but that levels of mature APP are greatly reduced in cerebellum compared to regions of the brain most vulnerable to AD, entorhinal cortex and hippocampus. In addition, protein levels of tau are significantly reduced in cerebellum compared to all other human brain regions examined. Unexpectedly, protein levels of glycogen synthase kinase 3 (GSK3), a major tau kinase, are at their lowest in hippocampus. The observations demonstrate that both mature APP as well as total APP and tau protein levels are greatly reduced in human cerebellum, a region of the human brain most resistant to AD pathology.


Cellular Signalling | 2015

The Notch intracellular domain represses CRE-dependent transcription

R Hallaq; F Volpicelli; I Cuchillo-Ibanez; Claudie Hooper; Keiko Mizuno; Dafe Uwanogho; Mirsada Causevic; Ayodeji A. Asuni; Alvina W.M. To; Salvador Soriano; Karl Peter Giese; Simon Lovestone; Richard Killick

Members of the cyclic-AMP response-element binding protein (CREB) transcription factor family regulate the expression of genes needed for long-term memory formation. Loss of Notch impairs long-term, but not short-term, memory in flies and mammals. We investigated if the Notch-1 (N1) exerts an effect on CREB-dependent gene transcription. We observed that N1 inhibits CREB mediated activation of cyclic-AMP response element (CRE) containing promoters in a γ-secretase-dependent manner. We went on to find that the γ-cleaved N1 intracellular domain (N1ICD) sequesters nuclear CREB1α, inhibits cAMP/PKA-mediated neurite outgrowth and represses the expression of specific CREB regulated genes associated with learning and memory in primary cortical neurons. Similar transcriptional effects were observed with the N2ICD, N3ICD and N4ICDs. Together, these observations indicate that the effects of Notch on learning and memory are, at least in part, via an effect on CREB-regulated gene expression.


PLOS ONE | 2018

BACE1-cleavage of Sez6 and Sez6L is elevated in Niemann-Pick type C disease mouse brains

Mirsada Causevic; Kristina Dominko; Martina Malnar; Lea Vidatic; Stjepko Čermak; Martina Pigoni; Peer-Hendrik Kuhn; Alessio Colombo; Daniel Havas; Stefanie Flunkert; Jessica McDonald; Jenny M. Gunnersen; Birgit Hutter-Paier; Sabina Tahirovic; Manfred Windisch; Dimitri Krainc; Stefan F. Lichtenthaler; Silva Hećimović

It is intriguing that a rare, inherited lysosomal storage disorder Niemann-Pick type C (NPC) shares similarities with Alzheimer’s disease (AD). We have previously reported an enhanced processing of β-amyloid precursor protein (APP) by β-secretase (BACE1), a key enzyme in the pathogenesis of AD, in NPC1-null cells. In this work, we characterized regional and temporal expression and processing of the recently identified BACE1 substrates seizure protein 6 (Sez6) and seizure 6-like protein (Sez6L), and APP, in NPC1-/- (NPC1) and NPC1+/+ (wt) mouse brains. We analysed 4-weeks old brains to detect the earliest changes associated with NPC, and 10-weeks of age to identify changes at terminal disease stage. Sez6 and Sez6L were selected due to their predominant cleavage by BACE1, and their potential role in synaptic function that may contribute to presentation of seizures and/or motor impairments in NPC patients. While an enhanced BACE1-cleavage of all three substrates was detected in NPC1 vs. wt-mouse brains at 4-weeks of age, at 10-weeks increased proteolysis by BACE1 was observed for Sez6L in the cortex, hippocampus and cerebellum of NPC1-mice. Interestingly, both APP and Sez6L were found to be expressed in Purkinje neurons and their immunostaining was lost upon Purkinje cell neurodegeneration in 10-weeks old NPC1 mice. Furthermore, in NPC1- vs. wt-mouse primary cortical neurons, both Sez6 and Sez6L showed increased punctuate staining within the endolysosomal pathway as well as increased Sez6L and BACE1-positive puncta. This indicates that a trafficking defect within the endolysosomal pathway may play a key role in enhanced BACE1-proteolysis in NPC disease. Overall, our findings suggest that enhanced proteolysis by BACE1 could be a part of NPC disease pathogenesis. Understanding the basic biology of BACE1 and the functional impact of cleavage of its substrates is important to better evaluate the therapeutic potential of BACE1 against AD and, possibly, NPC disease.


Alzheimers & Dementia | 2008

P3-022: Correlation of plasma biomarkers with clinical measures of Alzheimer's disease

Anna Kinsey; Madhav Thambisetty; Abdul Hye; Mirsada Causevic; Richard Killick; Martin Broadstock; Thorsten Prinz; Catherine Tunnard; Nicola Dunlop; Andrew Simmons; Christian Spenger; Malcolm Ward; Paul T. Francis; Simon Lovestone

Anna M. Kinsey, Madhav Thambisetty , Abdul Hye , Mirsada Causevic, Richard Killick , Martin Broadstock , Thorsten Prinz, Catherine Tunnard , Nicola Dunlop , Andrew Simmons, Christian Spenger , Malcolm Ward , Paul Francis , Simon Lovestone, and on behalf of the AddNeuroMed Consortium, Institute of Psychiatry, London, United Kingdom; Proteome Sciences, London, United Kingdom; Wolfson CARD, London, United Kingdom; Proteome Sciences, Frankfurt, Germany; Karolinska Institutet, Stockholm, Sweden. Contact e-mail: [email protected]


Brain | 2006

Proteome-based plasma biomarkers for Alzheimer's disease

Abdul Hye; Steven Lynham; Madhav Thambisetty; Mirsada Causevic; James F. Campbell; Helen Byers; Claudie Hooper; Fruhling Rijsdijk; Sarah J. Tabrizi; S Banner; Christopher Shaw; C. Foy; Michaella Poppe; Nicola Archer; Gillian Hamilton; John Powell; Richard G. Brown; Pak Sham; Malcolm Ward; Simon Lovestone

Collaboration


Dive into the Mirsada Causevic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madhav Thambisetty

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Abdul Hye

King's College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Campbell

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Sam Gandy

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge