Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mischa Schirmer is active.

Publication


Featured researches published by Mischa Schirmer.


Monthly Notices of the Royal Astronomical Society | 2007

The shear testing programme 2 : factors affecting high-precision weak-lensing analyses.

Richard Massey; Catherine Heymans; Joel Bergé; G. M. Bernstein; Sarah Bridle; Douglas Clowe; H. Dahle; Richard S. Ellis; Thomas Erben; Marco Hetterscheidt; F. William High; Christopher M. Hirata; Henk Hoekstra; P. Hudelot; M. Jarvis; David E. Johnston; Konrad Kuijken; V. E. Margoniner; Rachel Mandelbaum; Y. Mellier; Reiko Nakajima; Stephane Paulin-Henriksson; Molly S. Peeples; Chris Roat; Alexandre Refregier; Jason Rhodes; Tim Schrabback; Mischa Schirmer; Uros Seljak; Elisabetta Semboloni

The Shear Testing Programme (STEP) is a collaborative project to improve the accuracy and reliability of weak-lensing measurement, in preparation for the next generation of wide-field surveys. We review 16 current and emerging shear-measurement methods in a common language, and assess their performance by running them (blindly) on simulated images that contain a known shear signal. We determine the common features of algorithms that most successfully recover the input parameters. A desirable goal would be the combination of their best elements into one ultimate shear-measurement method. In this analysis, we achieve previously unattained discriminatory precision via a combination of more extensive simulations and pairs of galaxy images that have been rotated with respect to each other. That removes the otherwise overwhelming noise from their intrinsic ellipticities. Finally, the robustness of our simulation approach is confirmed by testing the relative calibration of methods on real data. Weak-lensing measurements have improved since the first STEP paper. Several methods now consistently achieve better than 2 per cent precision, and are still being developed. However, we can now distinguish all methods from perfect performance. Our main concern continues to be the potential for a multiplicative shear calibration bias: not least because this cannot be internally calibrated with real data. We determine which galaxy populations are responsible for bias and, by adjusting the simulated observing conditions, we also investigate the effects of instrumental and atmospheric parameters. The simulated point spread functions are not allowed to vary spatially, to avoid additional confusion from interpolation errors. We have isolated several previously unrecognized aspects of galaxy shape measurement, in which focused development could provide further progress towards the sub-per cent level of precision desired for future surveys. These areas include the suitable treatment of image pixellization and galaxy morphology evolution. Ignoring the former effect affects the measurement of shear in different directions, leading to an overall underestimation of shear and hence the amplitude of the matter power spectrum. Ignoring the second effect could affect the calibration of shear estimators as a function of galaxy redshift, and the evolution of the lensing signal, which will be vital to measure parameters including the dark energy equation of state.


Astronomische Nachrichten | 2005

GaBoDS: The Garching-Bonn Deep Survey. IV. Methods for the image reduction of multi-chip cameras demonstrated on data from the ESO Wide-Field Imager

Thomas Erben; Mischa Schirmer; J. P. Dietrich; O. Cordes; L. Haberzettl; Marco Hetterscheidt; Hendrik Hildebrandt; O. Schmithuesen; Peter Schneider; Patrick Simon; E. Deul; R. N. Hook; Nick Kaiser; M. Radovich; C. Benoist; M. Nonino; L. F. Olsen; I. Prandoni; R. Wichmann; S. Zaggia; Dominik J. Bomans; R.-J. Dettmar; J. M. Miralles

We present our image processing system for the reduction of optical imaging data from multi-chip cameras. In the framework of the Garching Bonn Deep Survey (GaBoDS; Schirmer et al. 2003) consisting of about 20 square degrees of high-quality data from WFI@MPG/ESO 2.2m, our group developed an imaging pipeline for the homogeneous and efficient processing of thislarge data set. Having weak gravitational lensing as the main science driver, our algorithms are optimised to produce deep co-added mosaics from individual exposures obtained from empty field observations. However, the modular design of our pipeline allows an easy adaption to different scientific applications. Our system has already been ported to a large variety of optical instruments and its products have been used in various scientific contexts. In this paper we give a thorough description of the algorithms used and a careful evaluation of the accuracies reached. This concerns the removal of the instrumental signature, the astrometric alignment, photometric calibration and the characterisation of final co-added mosaics. In addition we give a more general overview on the image reduction process and comment on observing strategies where they have significant influence on the data quality.


The Astronomical Journal | 2010

Stellar Tidal Streams In Spiral Galaxies Of The Local Volume: A Pilot Survey With Modest Aperture Telescopes

David Martinez-Delgado; R. Jay Gabany; Ken Crawford; Stefano Zibetti; Steven R. Majewski; Hans-Walter Rix; Jürgen Fliri; Julio A. Carballo-Bello; Daniella C. Bardalez-Gagliuffi; Jorge Peñarrubia; Taylor S. Chonis; Barry F. Madore; Ignacio Trujillo; Mischa Schirmer; David McDavid

Within the hierarchical framework for galaxy formation, minor merging and tidal interactions are expected to shape all large galaxies to the present day. As a consequence, most seemingly normal disk galaxies should be surrounded by spatially extended stellar “tidal features” of low surface brightness. As part of a pilot survey for such interaction signatures, we have carried out ultra deep, wide field imaging of eight isolated spiral galaxies in the Local Volume, with data taken at small (D = 0.1–0.5 m) robotic telescopes that provide exquisite surface brightness sensitivity (μlim(V ) ∼ 28.5 mag arcsec −2 ). This initial observational effort has led to the discovery of six previously undetected extensive (to ∼30 kpc) stellar structures in the halos surrounding these galaxies, likely debris from tidally disrupted satellites. In addition, we confirm and clarify several enormous stellar over-densities previously reported in the literature, but never before interpreted as tidal streams. Even this pilot sample of galaxies exhibits strikingly diverse morphological characteristics of these extended stellar features: great circle-like features that resemble the Sagittarius stream surrounding the Milky Way, remote shells and giant clouds of presumed tidal debris far beyond the main stellar body, as well as jet-like features emerging from galactic disks. Together with presumed remains of already disrupted companions, our observations also capture surviving satellites caught in the act of tidal disruption. A qualitative comparison with available simulations set in a ΛCold Dark Matter cosmology (that model the stellar halo as the result of satellite disruption evolution) shows that the extraordinary variety of stellar morphologies detected in this pilot survey matches that seen in those simulations. The common existence of these tidal features around “normal” disk galaxies and the morphological match to the simulations constitutes new evidence that these theoretical models also apply to a large number of other Milky Way-mass disk galaxies in the Local Volume.


arXiv: Astrophysics | 2005

GaBoDS: The Garching-Bonn Deep Survey IV. Methods for the Image reduction of multi-chip Cameras ⋆

Thomas Erben; Mischa Schirmer; J. P. Dietrich; O. Cordes; Lutz Haberzettl; Marco Hetterscheidt; Olaf Schmithuesen; Peter Schneider; Patrick Simon; J. C. Cuillandre; E. Deul; R. N. Hook; M. Radovich; Christophe Benoist; M. Nonino; L. F. Olsen; I. Prandoni; R. Wichmann; D. J. Bomans; R.-J. Dettmar; J. M. Miralles

We present our image processing system for the reduction of optical imaging data from multi-chip cameras. In the framework of the Garching Bonn Deep Survey (GaBoDS; Schirmer et al. 2003) consisting of about 20 square degrees of high-quality data from WFI@MPG/ESO 2.2m, our group developed an imaging pipeline for the homogeneous and efficient processing of thislarge data set. Having weak gravitational lensing as the main science driver, our algorithms are optimised to produce deep co-added mosaics from individual exposures obtained from empty field observations. However, the modular design of our pipeline allows an easy adaption to different scientific applications. Our system has already been ported to a large variety of optical instruments and its products have been used in various scientific contexts. In this paper we give a thorough description of the algorithms used and a careful evaluation of the accuracies reached. This concerns the removal of the instrumental signature, the astrometric alignment, photometric calibration and the characterisation of final co-added mosaics. In addition we give a more general overview on the image reduction process and comment on observing strategies where they have significant influence on the data quality.


Astrophysical Journal Supplement Series | 2013

THELI: Convenient Reduction of Optical, Near-infrared, and Mid-infrared Imaging Data

Mischa Schirmer

The last 15 years have seen a surge of new multi-chip optical and near-IR imagers. While some of them are accompanied by specific reduction pipelines, user-friendly and generic reduction tools are uncommon. In this paper I introduce THELI, an easy-to-use graphical interface driving an end-to-end pipeline for the reduction of any optical, near-IR, and mid-IR imaging data. The advantages of THELI when compared to other approaches are highlighted. Combining a multitude of processing algorithms and third party software, THELI provides researchers with a single, homogeneous tool. A short learning curve ensures quick success for new and more experienced observers alike. All tasks are largely automated, while at the same time a high level of flexibility and alternative reduction schemes ensure that widely different scientific requirements can be met. Over 90 optical and infrared instruments at observatories world-wide are pre-configured, while more can be added by the user. The Appendices contain three walk-through examples using public data (optical, near-IR, and mid-IR). Additional extensive documentation for training and troubleshooting is available online.


The Astrophysical Journal | 2006

Mass Distributions of Hubble Space Telescope Galaxy Clusters from Gravitational Arcs

Julia M. Comerford; M. Meneghetti; Matthias Bartelmann; Mischa Schirmer

Although N-body simulations of cosmic structure formation suggest that dark matter halos have density profiles shallower than isothermal at small radii and steeper at large radii, whether observed galaxy clusters follow this profile is still ambiguous. We use one such density profile, the asymmetric NFW profile, to model the mass distributions of 11 galaxy clusters with gravitational arcs observed by HST. We characterize the galaxy lenses in each cluster as NFW ellipsoids, each defined by an unknown scale convergence, scale radius, ellipticity, and position angle. For a given set of values of these parameters, we compute the arcs that would be produced by such a lens system. To define the goodness of fit to the observed arc system, we define a chi^2 function encompassing the overlap between the observed and reproduced arcs as well as the agreement between the predicted arc sources and the observational constraints on the source system. We minimize this chi^2 to find the values of the lens parameters that best reproduce the observed arc system in a given cluster. Here we report our best-fit lens parameters and corresponding mass estimates for each of the 11 lensing clusters. We find that cluster mass models based on lensing galaxies defined as NFW ellipsoids can accurately reproduce the observed arcs, and that the best-fit parameters to such a model fall within the reasonable ranges defined by simulations. These results assert NFW profiles as an effective model for the mass distributions of observed clusters.


Astronomy and Astrophysics | 2006

GaBoDS: The Garching-Bonn Deep Survey V. Data release of the ESO Deep-Public-Survey ?

Hendrik Hildebrandt; Thomas Erben; J. P. Dietrich; O. Cordes; Lutz Haberzettl; Marco Hetterscheidt; Mischa Schirmer; Olaf Schmithuesen; Peter Schneider; Patrick Simon; Clemens Trachternach

Aims. In this paper the optical data of the ESO Deep-Public-Survey observed with the Wide Field Imager and reduced with the THELI pipeline are described. Methods. Here we present 63 fully reduced and stacked images. The astrometric and photometric calibrations are discussed and the properties of the images are compared to images released by the ESO Imaging Survey team covering a subset of our data. Results. These images are publicly released to the community. Our main scientific goals with this survey are to study the high-redshift universe by optically pre-selecting high-redshift objects from imaging data and to use VLT instruments for follow-up spectroscopy as well as weak lensing applications.


arXiv: Astrophysics | 2006

GaBoDS: The Garching-Bonn Deep Survey: VI. Cosmic shear analysis

Marco Hetterscheidt; Patrick Simon; Mischa Schirmer; Hendrik Hildebrandt; Tim Schrabback; Thomas Erben; Peter Schneider

Aims. We present a cosmic shear analysis and data validation of 15 square degree high-quality R-band data of the Garching-Bonn Deep Survey obtained with the Wide Field Imager of the MPG/ESO 2.2m telescope. Methods. We measure the two-point shear correlation functions to calculate the aperture mass dispersion. Both statistics are used to perform the data quality control. Combining the cosmic shear signal with a photometric redshift distribution of a galaxy sub-sample obtained from two square degree of UBVRI-band observations of the Deep Public Survey we determine constraints for the matter density Omega_m, the mass power spectrum normalisation sigma_8 and the dark energy density Omega_Lambda in the magnitude interval R in [21.5,24.5]. In this magnitude interval the effective number density of source galaxies is n=12.5/sq. arcmin, and their mean redshift is z_m=0.78. To estimate the posterior likelihood we employ the Monte Carlo Markov Chain method. Results. Using the aperture mass dispersion we obtain for the mass power spectrum normalisation sigma_8=0.80 +- 0.10 (1 sigma statistical error) at a fixed matter density Omega_m=0.30 assuming a flat universe with negligible baryon content and marginalising over the Hubble parameter and the uncertainties in the fitted redshift distribution.


Astronomy and Astrophysics | 2007

GaBoDS: The Garching-Bonn deep survey - VII. Cosmic shear analysis

Marco Hetterscheidt; Patrick Simon; Mischa Schirmer; Hendrik Hildebrandt; Tim Schrabback; Thomas Erben; Peter Schneider

Aims. We present a cosmic shear analysis and data validation of 15 square degree high-quality R-band data of the Garching-Bonn Deep Survey obtained with the Wide Field Imager of the MPG/ESO 2.2m telescope. Methods. We measure the two-point shear correlation functions to calculate the aperture mass dispersion. Both statistics are used to perform the data quality control. Combining the cosmic shear signal with a photometric redshift distribution of a galaxy sub-sample obtained from two square degree of UBVRI-band observations of the Deep Public Survey we determine constraints for the matter density Omega_m, the mass power spectrum normalisation sigma_8 and the dark energy density Omega_Lambda in the magnitude interval R in [21.5,24.5]. In this magnitude interval the effective number density of source galaxies is n=12.5/sq. arcmin, and their mean redshift is z_m=0.78. To estimate the posterior likelihood we employ the Monte Carlo Markov Chain method. Results. Using the aperture mass dispersion we obtain for the mass power spectrum normalisation sigma_8=0.80 +- 0.10 (1 sigma statistical error) at a fixed matter density Omega_m=0.30 assuming a flat universe with negligible baryon content and marginalising over the Hubble parameter and the uncertainties in the fitted redshift distribution.


Astronomy and Astrophysics | 2005

Strong and weak lensing united: II. The cluster mass distribution of the most X-ray luminous cluster RX J1347.5-1145

Marusa Bradac; Thomas Erben; Peter Schneider; Hendrik Hildebrandt; Marco Lombardi; Mischa Schirmer; J. M. Miralles; Douglas Clowe; Sabine Schindler

We have shown that the cluster-mass reconstruction method which combines strong and weak gravitational lensing data, developed in the first paper in the series, successfully reconstructs the mass distribution of a simulated cluster. In this paper we apply the method to the ground-based high-quality multi-colour data of RX J1347.5-1145 , the most X-ray luminous cluster to date. A new analysis of the cluster core on very deep, multi-colour data analysis of VLT/FORS data reveals many more arc candidates than previously known for this cluster. The combined strong and weak lensing reconstruction confirms that the cluster is indeed very massive. If the redshift and identification of the multiple-image system as well as the redshift estimates of the source galaxies used for weak lensing are correct, we determine the enclosed cluster mass in a cylinder to M(<360 h -1 kpc)= (1.2± 0.3) x 1015 M⊙. In addition the reconstructed mass distribution follows the distribution found with independent methods (X-ray measurements, SZ). With higher resolution (e.g. HST imaging data) more reliable multiple imaging information can be obtained and the reconstruction can be improved to accuracies greater than what is currently possible with weak and strong lensing techniques.

Collaboration


Dive into the Mischa Schirmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Wolf

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge