Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Misha B. Ahrens is active.

Publication


Featured researches published by Misha B. Ahrens.


Nature Methods | 2013

Whole-brain functional imaging at cellular resolution using light-sheet microscopy

Misha B. Ahrens; Michael B Orger; Drew N. Robson; Jennifer M. Li; Philipp J. Keller

Brain function relies on communication between large populations of neurons across multiple brain areas, a full understanding of which would require knowledge of the time-varying activity of all neurons in the central nervous system. Here we use light-sheet microscopy to record activity, reported through the genetically encoded calcium indicator GCaMP5G, from the entire volume of the brain of the larval zebrafish in vivo at 0.8 Hz, capturing more than 80% of all neurons at single-cell resolution. Demonstrating how this technique can be used to reveal functionally defined circuits across the brain, we identify two populations of neurons with correlated activity patterns. One circuit consists of hindbrain neurons functionally coupled to spinal cord neuropil. The other consists of an anatomically symmetric population in the anterior hindbrain, with activity in the left and right halves oscillating in antiphase, on a timescale of 20 s, and coupled to equally slow oscillations in the inferior olive.


Nature | 2012

Brain-wide neuronal dynamics during motor adaptation in zebrafish

Misha B. Ahrens; Jennifer M. Li; Michael B. Orger; Drew N. Robson; Alexander F. Schier; Florian Engert; Ruben Portugues

A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.


eLife | 2016

Sensitive red protein calcium indicators for imaging neural activity

Hod Dana; Boaz Mohar; Yi Sun; Sujatha Narayan; Andrew Gordus; Jeremy P Hasseman; Getahun Tsegaye; Graham T. Holt; Amy Hu; Deepika Walpita; Ronak Patel; John J. Macklin; Cornelia I. Bargmann; Misha B. Ahrens; Eric R. Schreiter; Vivek Jayaraman; Loren L. Looger; Karel Svoboda; Douglas S. Kim

Genetically encoded calcium indicators (GECIs) allow measurement of activity in large populations of neurons and in small neuronal compartments, over times of milliseconds to months. Although GFP-based GECIs are widely used for in vivo neurophysiology, GECIs with red-shifted excitation and emission spectra have advantages for in vivo imaging because of reduced scattering and absorption in tissue, and a consequent reduction in phototoxicity. However, current red GECIs are inferior to the state-of-the-art GFP-based GCaMP6 indicators for detecting and quantifying neural activity. Here we present improved red GECIs based on mRuby (jRCaMP1a, b) and mApple (jRGECO1a), with sensitivity comparable to GCaMP6. We characterized the performance of the new red GECIs in cultured neurons and in mouse, Drosophila, zebrafish and C. elegans in vivo. Red GECIs facilitate deep-tissue imaging, dual-color imaging together with GFP-based reporters, and the use of optogenetics in combination with calcium imaging. DOI: http://dx.doi.org/10.7554/eLife.12727.001


Science | 2015

Labeling of active neural circuits in vivo with designed calcium integrators

Benjamin F. Fosque; Yi Sun; Hod Dana; Chao-Tsung Yang; Tomoko Ohyama; Michael R. Tadross; Ronak Patel; Marta Zlatic; Douglas S. Kim; Misha B. Ahrens; Vivek Jayaraman; Loren L. Looger; Eric R. Schreiter

Taking a snapshot of active brain circuitry Neuroscientists now have a method to mark active populations of neurons in vivo to study circuit activity in the behaving animal. Fosque et al. designed and thoroughly validated a fluorescent protein–based reagent that allows permanent marking of active cells over short time scales. This indicator, termed CaMPARI, switches from its native green to a red fluorescent state by simultaneous illumination with violet light and exposure to increased levels of intracellular calcium. CaMPARI successfully marked active nerve cells in Drosophila, zebrafish, and mouse brains. Science, this issue p. 755 A fluorescent sensor allows cellular-resolution snapshots of activity across the whole brains of freely moving organisms. The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca2+) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise “activity snapshot” of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca2+ and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies.


Nature Methods | 2014

Mapping brain activity at scale with cluster computing

Jeremy Freeman; Nikita Vladimirov; Takashi Kawashima; Yu Mu; Nicholas James Sofroniew; Davis V Bennett; Joshua Rosen; Chao-Tsung Yang; Loren L. Looger; Misha B. Ahrens

Understanding brain function requires monitoring and interpreting the activity of large networks of neurons during behavior. Advances in recording technology are greatly increasing the size and complexity of neural data. Analyzing such data will pose a fundamental bottleneck for neuroscience. We present a library of analytical tools called Thunder built on the open-source Apache Spark platform for large-scale distributed computing. The library implements a variety of univariate and multivariate analyses with a modular, extendable structure well-suited to interactive exploration and analysis development. We demonstrate how these analyses find structure in large-scale neural data, including whole-brain light-sheet imaging data from fictively behaving larval zebrafish, and two-photon imaging data from behaving mouse. The analyses relate neuronal responses to sensory input and behavior, run in minutes or less and can be used on a private cluster or in the cloud. Our open-source framework thus holds promise for turning brain activity mapping efforts into biological insights.


The Journal of Neuroscience | 2008

Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods

Misha B. Ahrens; Jennifer F. Linden; Maneesh Sahani

The relationship between a sound and its neural representation in the auditory cortex remains elusive. Simple measures such as the frequency response area or frequency tuning curve provide little insight into the function of the auditory cortex in complex sound environments. Spectrotemporal receptive field (STRF) models, despite their descriptive potential, perform poorly when used to predict auditory cortical responses, showing that nonlinear features of cortical response functions, which are not captured by STRFs, are functionally important. We introduce a new approach to the description of auditory cortical responses, using multilinear modeling methods. These descriptions simultaneously account for several nonlinearities in the stimulus–response functions of auditory cortical neurons, including adaptation, spectral interactions, and nonlinear sensitivity to sound level. The models reveal multiple inseparabilities in cortical processing of time lag, frequency, and sound level, and suggest functional mechanisms by which auditory cortical neurons are sensitive to stimulus context. By explicitly modeling these contextual influences, the models are able to predict auditory cortical responses more accurately than are STRF models. In addition, they can explain some forms of stimulus dependence in STRFs that were previously poorly understood.


Neuron | 2015

Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy

Philipp J. Keller; Misha B. Ahrens

The nature of nervous system function and development is inherently global, since all components eventually influence one another. Networks communicate through dense synaptic, electric, and modulatory connections and develop through concurrent growth and interlinking of their neurons, processes, glia, and blood vessels. These factors drive the development of techniques capable of imaging neural signaling, anatomy, and developmental processes at ever-larger scales. Here, we discuss the nature of questions benefitting from large-scale imaging techniques and introduce recent applications. We focus on emerging light-sheet microscopy approaches, which are well suited for live imaging of large systems with high spatiotemporal resolution and over long periods of time. We also discuss computational methods suitable for extracting biological information from the resulting system-level image data sets. Together with new tools for reporting and manipulating neuronal activity and gene expression, these techniques promise new insights into the large-scale function and development of neural systems.


Neuron | 2016

Neural Circuits Underlying Visually Evoked Escapes in Larval Zebrafish.

Timothy W. Dunn; Christoph Gebhardt; Eva A. Naumann; Clemens Riegler; Misha B. Ahrens; Florian Engert; Filippo Del Bene

Escape behaviors deliver organisms away from imminent catastrophe. Here, we characterize behavioral responses of freely swimming larval zebrafish to looming visual stimuli simulating predators. We report that the visual system alone can recruit lateralized, rapid escape motor programs, similar to those elicited by mechanosensory modalities. Two-photon calcium imaging of retino-recipient midbrain regions isolated the optic tectum as an important center processing looming stimuli, with ensemble activity encoding the critical image size determining escape latency. Furthermore, we describe activity in retinal ganglion cell terminals and superficial inhibitory interneurons in the tectum during looming and propose a model for how temporal dynamics in tectal periventricular neurons might arise from computations between these two fundamental constituents. Finally, laser ablations of hindbrain circuitry confirmed that visual and mechanosensory modalities share the same premotor output network. We establish a circuit for the processing of aversive stimuli in the context of an innate visual behavior.


Network: Computation In Neural Systems | 2008

Inferring input nonlinearities in neural encoding models

Misha B. Ahrens; Liam Paninski; Maneesh Sahani

We describe a class of models that predict how the instantaneous firing rate of a neuron depends on a dynamic stimulus. The models utilize a learnt pointwise nonlinear transform of the stimulus, followed by a linear filter that acts on the sequence of transformed inputs. In one case, the nonlinear transform is the same at all filter lag-times. Thus, this “input nonlinearity” converts the initial numerical representation of stimulus value to a new representation that provides optimal input to the subsequent linear model. We describe algorithms that estimate both the input nonlinearity and the linear weights simultaneously; and present techniques to regularise and quantify uncertainty in the estimates. In a second approach, the model is generalized to allow a different nonlinear transform of the stimulus value at each lag-time. Although more general, this model is algorithmically more straightforward to fit. However, it has many more degrees of freedom than the first approach, thus requiring more data for accurate estimation. We test the feasibility of these methods on synthetic data, and on responses from a neuron in rodent barrel cortex. The models are shown to predict responses to novel data accurately, and to recover several important neuronal response properties.


Current Opinion in Neurobiology | 2013

Optogenetics in a transparent animal: circuit function in the larval zebrafish.

Ruben Portugues; Kristen E. Severi; Claire Wyart; Misha B. Ahrens

Optogenetic tools can be used to manipulate neuronal activity in a reversible and specific manner. In recent years, such methods have been applied to uncover causal relationships between activity in specified neuronal circuits and behavior in the larval zebrafish. In this small, transparent, genetic model organism, noninvasive manipulation and monitoring of neuronal activity with light is possible throughout the nervous system. Here we review recent work in which these new tools have been applied to zebrafish, and discuss some of the existing challenges of these approaches.

Collaboration


Dive into the Misha B. Ahrens's collaboration.

Top Co-Authors

Avatar

Chao-Tsung Yang

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Mu

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Maneesh Sahani

University College London

View shared research outputs
Top Co-Authors

Avatar

Jeremy Freeman

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Loren L. Looger

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Takashi Kawashima

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Philipp J. Keller

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Brett D. Mensh

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge