Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Misha Vorobyev is active.

Publication


Featured researches published by Misha Vorobyev.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 1998

Tetrachromacy, oil droplets and bird plumage colours

Misha Vorobyev; Daniel Osorio; Atd Bennett; Nj Marshall; Innes C. Cuthill

Abstract There is a growing body of data on avian eyes, including measurements of visual pigment and oil droplet spectral absorption, and of receptor densities and their distributions across the retina. These data are sufficient to predict psychophysical colour discrimination thresholds for light-adapted eyes, and hence provide a basis for relating eye design to visual needs. We examine the advantages of coloured oil droplets, UV vision and tetrachromacy for discriminating a diverse set of avian plumage spectra under natural illumination. Discriminability is enhanced both by tetrachromacy and coloured oil droplets. Oil droplets may also improve colour constancy. Comparison of the performance of a pigeons eye, where the shortest wavelength receptor peak is at 410 nm, with that of the passerine Leiothrix, where the ultraviolet-sensitive peak is at 365 nm, generally shows a small advantage to the latter, but this advantage depends critically on the noise level in the sensitivity mechanism and on the set of spectra being viewed.


Biological Reviews | 2003

Animal colour vision – behavioural tests and physiological concepts

Almut Kelber; Misha Vorobyev; Daniel Osorio

Over a century ago workers such as J. Lubbock and K. von Frisch developed behavioural criteria for establishing that non‐human animals see colour. Many animals in most phyla have since then been shown to have colour vision. Colour is used for specific behaviours, such as phototaxis and object recognition, while other behaviours such as motion detection are colour blind. Having established the existence of colour vision, research focussed on the question of how many spectral types of photoreceptors are involved. Recently, data on photoreceptor spectral sensitivities have been combined with behavioural experiments and physiological models to study systematically the next logical question: ‘what neural interactions underlie colour vision ?‘This review gives an overview of the methods used to study animal colour vision, and discusses how quantitative modelling can suggest how photoreceptor signals are combined and compared to allow for the discrimination of biologically relevant stimuli.


The Journal of Experimental Biology | 2004

Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio.

Afsheen Siddiqi; Thomas W. Cronin; Ellis R. Loew; Misha Vorobyev; Kyle Summers

SUMMARY Poison frogs in the anuran family Dendrobatidae use bright colors on their bodies to advertise toxicity. The species Dendrobates pumilio Schmidt 1858, the strawberry poison frog, shows extreme polymorphism in color and pattern in Panama. It is known that females of D. pumilio preferentially choose mates of their own color morph. Nevertheless, potential predators must clearly see and recognize all color morphs if the aposematic signaling system is to function effectively. We examined the ability of conspecifics and a model predator to discriminate a diverse selection of D. pumilio colors from each other and from background colors. Microspectrophotometry of isolated rod and cone photoreceptors of D. pumilio revealed the presence of a trichromatic photopic visual system. A typical tetrachromatic bird system was used for the model predator. Reflectance spectra of frog and background colors were obtained, and discrimination among spectra in natural illuminants was mathematically modeled. The results revealed that both D. pumilio and the model predator discriminate most colors quite well, both from each other and from typical backgrounds, with the predator generally performing somewhat better than the conspecifics. Each color morph displayed at least one color signal that is highly visible against backgrounds to both visual systems. Our results indicate that the colors displayed by the various color morphs of D. pumilio are effective signals both to conspecifics and to a model predator.


Proceedings of the Royal Society of London B: Biological Sciences | 1996

Colour Vision as an Adaptation to Frugivory in Primates

Daniel Osorio; Misha Vorobyev

Most mammals possess two classes of cone, sensitive to short and to long wavelengths of light, but Old World primates (Catarrhini) have distinct medium and long wavelength sensitive classes. The sensitivities of these cones photopigments are alike in all catarrhines with peaks at about 440 nm (‘blue’), 533 nm (‘green’) and 565 nm (‘red’). One possible reason for the evolution and conservatism of catarrhine trichromacy is that colour vision is a specialization for finding food. A model of retinal coding of natural spectra, based on discrimination thresholds, is used to examine the usefulness of dichromatic and trichromatic vision for finding fruit, and for identifying fruit and leaves by colour. For identification tasks the dichromat’s eye is almost as good as a trichromat’s, but the trichromat has an advantage for detecting fruit against a background of leaves.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 1996

Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts

Martin Giurfa; Misha Vorobyev; P. Kevan; Randolf Menzel

Honeybees Apis mellifera were trained to distinguish between the presence and the absence of a rewarded coloured spot, presented on a vertical, achromatic plane in a Y-maze. They were subsequently tested with different subtended visual angles of that spot, generated by different disk diameters and different distances from the decision point in the device. Bees were trained easily to detect bee-chromatic colours, but not an achromatic one. Chromatic contrast was not the only parameter allowing learning and, therefore, detection: αmin, the subtended visual angle at which the bees detect a given stimulus with a probability P0 = 0.6, was 5° for stimuli presenting both chromatic contrast and contrast for the green photoreceptors [i.e. excitation difference in the green photoreceptors, between target and background (green contrast)], and 15° for stimuli presenting chromatic but no green contrast. Our results suggest that green contrast can be utilized for target detection if target recognition has been established by means of the colour vision system. The green-contrast signal would be used as a far-distance signal for flower detection. This signal would always be detected before chromatic contrast during an approach flight and would be learned in compound with chromatic contrast, in a facilitation-like process.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

Photoreceptor spectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision

Daniel Osorio; Misha Vorobyev

This review outlines how eyes of terrestrial vertebrates and insects meet the competing requirements of coding both spatial and spectral information. There is no unique solution to this problem. Thus, mammals and honeybees use their long-wavelength receptors for both achromatic (luminance) and colour vision, whereas flies and birds probably use separate sets of photoreceptors for the two purposes. In particular, we look at spectral tuning and diversification among ‘long-wavelength’ receptors (sensitivity maxima at greater than 500 nm), which play a primary role in luminance vision. Data on spectral sensitivities and phylogeny of visual photopigments can be incorporated into theoretical models to suggest how eyes are adapted to coding natural stimuli. Models indicate, for example, that animal colour vision—involving five or fewer broadly tuned receptors—is well matched to most natural spectra. We can also predict that the particular objects of interest and signal-to-noise ratios will affect the optimal eye design. Nonetheless, it remains difficult to account for the adaptive significance of features such as co-expression of photopigments in single receptors, variation in spectral sensitivities of mammalian L-cone pigments and the diversification of long-wavelength receptors that has occurred in several terrestrial lineages.


Vision Research | 2001

Colour thresholds and receptor noise: behaviour and physiology compared

Misha Vorobyev; Robert Brandt; Dagmar Peitsch; Simon B. Laughlin; Randolf Menzel

Photoreceptor noise sets an absolute limit for the accuracy of colour discrimination. We compared colour thresholds in the honeybee (Apis mellifera) with this limit. Bees were trained to discriminate an achromatic stimulus from monochromatic lights of various wavelengths as a function of their intensity. Signal-to-noise ratios were measured by intracellular recordings in the three spectral types of photoreceptor cells. To model thresholds we assumed that discrimination was mediated by opponent mechanisms whose performance was limited by receptor noise. Most of the behavioural thresholds were close to those predicted from receptor signal-to-noise ratios, suggesting that colour discrimination in honeybees is affected by photoreceptor noise. Some of the thresholds were lower than this theoretical limit, which indicates summation of photoreceptor cell signals.


Proceedings of The Royal Society of London Series B- Biological Sciences | 2003

Coloured oil droplets enhance colour discrimination

Misha Vorobyev

The eyes of most diurnal reptiles and birds contain coloured retinal filters—oil droplets. Although these filters are widespread, their adaptive advantage remains uncertain. To understand why coloured oil droplets appeared and were retained during evolution, I consider both the benefits and the costs of light filtering in the retina. Oil droplets decrease cone quantum catch and reduce the overlap in sensitivity between spectrally adjacent cones. The reduction of spectral overlap increases the volume occupied by object colours in a cone space, whereas the decrease in quantum catch increases noise, and thus reduces the discriminability of similar colours. The trade–off between these two effects determines the total benefit of oil droplets. Calculations show that coloured oil droplets increase the number of object colours that can be discriminated, and thus are beneficial for colour vision.


Vision Research | 2008

A review of the evolution of animal colour vision and visual communication signals.

Daniel Osorio; Misha Vorobyev

The visual displays of animals and plants are often colourful, and colour vision allows animals to respond to these signals as they forage for food, choose mates and so-forth. This article discusses the evolutionary relationship between photoreceptor spectral sensitivities of four groups of land animals--birds, butterflies, primates and hymenopteran insects (bees and wasps)--, the colour signals that are relevant to them, and how understanding is informed by models of spectral coding and colour vision. Although the spectral sensitivities of photoreceptors are known to vary adaptively under natural selection there is little evidence that those of hymenopterans, birds and primates are specifically adapted to the reflectance spectra of food plants or animal visual signals. On the other hand, the colours of fruit, flowers and feathers may have evolved to be more discriminable for the colour vision of their natural receivers than for other groups of animals. Butterflies are unusual in that they have enjoyed a major radiation in receptor numbers and spectral sensitivities. The reasons for the radiation and diversity of butterfly colour vision remain unknown, but may include their need to find food plants and to select mates.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2005

Modelling oil droplet absorption spectra and spectral sensitivities of bird cone photoreceptors

Nathan S. Hart; Misha Vorobyev

Birds have four spectrally distinct types of single cones that they use for colour vision. It is often desirable to be able to model the spectral sensitivities of the different cone types, which vary considerably between species. However, although there are several mathematical models available for describing the spectral absorption of visual pigments, there is no model describing the spectral absorption of the coloured oil droplets found in three of the four single cone types. In this paper, we describe such a model and illustrate its use in estimating the spectral sensitivities of single cones. Furthermore, we show that the spectral locations of the wavelengths of maximum absorbance (λmax) of the short- (SWS), medium- (MWS) and long- (LWS) wavelength-sensitive visual pigments and the cut-off wavelengths (λcut) of their respective C-, Y- and R-type oil droplets can be predicted from the λmax of the ultraviolet- (UVS)/violet- (VS) sensitive visual pigment.

Collaboration


Dive into the Misha Vorobyev's collaboration.

Top Co-Authors

Avatar

Randolf Menzel

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Brandt

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan S. Hart

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge