Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Misook Ha is active.

Publication


Featured researches published by Misook Ha.


Nature | 2009

Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids.

Zhongfu Ni; Eun-Deok Kim; Misook Ha; Erika Lackey; Jianxin Liu; Yirong Zhang; Qixin Sun; Z. Jeffrey Chen

Segregating hybrids and stable allopolyploids display morphological vigour, and Arabidopsis allotetraploids are larger than the parents Arabidopsis thaliana and Arabidopsis arenosa—the mechanisms for this are unknown. Circadian clocks mediate metabolic pathways and increase fitness in animals and plants. Here we report that epigenetic modifications of the circadian clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and their reciprocal regulators TIMING OF CAB EXPRESSION 1 (TOC1) and GIGANTEA (GI) mediate expression changes in downstream genes and pathways. During the day, epigenetic repression of CCA1 and LHY induced the expression of TOC1, GI and downstream genes containing evening elements in chlorophyll and starch metabolic pathways in allotetraploids and F1 hybrids, which produced more chlorophyll and starch than the parents in the same environment. Mutations in cca1 and cca1 lhy and the daily repression of cca1 by RNA interference (RNAi) in TOC1::cca1(RNAi) transgenic plants increased the expression of downstream genes and increased chlorophyll and starch content, whereas constitutively expressing CCA1 or ectopically expressing TOC1::CCA1 had the opposite effect. The causal effects of CCA1 on output traits suggest that hybrids and allopolyploids gain advantages from the control of circadian-mediated physiological and metabolic pathways, leading to growth vigour and increased biomass.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids.

Misook Ha; Jie Lu; Lu Tian; Kristin D. Kasschau; Elisabeth J. Chapman; James C. Carrington; Xuemei Chen; Xiu-Jie Wang; Z. Jeffrey Chen

Small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs), control gene expression and epigenetic regulation. Although the roles of miRNAs and siRNAs have been extensively studied, their expression diversity and evolution in closely related species and interspecific hybrids are poorly understood. Here, we show comprehensive analyses of miRNA expression and siRNA distributions in two closely related species Arabidopsis thaliana and Arabidopsis arenosa, a natural allotetraploid Arabidopsis suecica, and two resynthesized allotetraploid lines (F1 and F7) derived from A. thaliana and A. arenosa. We found that repeat- and transposon-associated siRNAs were highly divergent between A. thaliana and A. arenosa. A. thaliana siRNA populations underwent rapid changes in F1 but were stably maintained in F7 and A. suecica. The correlation between siRNAs and nonadditive gene expression in allopolyploids is insignificant. In contrast, miRNA and tasiRNA sequences were conserved between species, but their expression patterns were highly variable between the allotetraploids and their progenitors. Many miRNAs tested were nonadditively expressed (deviating from the mid-parent value, MPV) in the allotetraploids and triggered unequal degradation of A. thaliana or A. arenosa targets. The data suggest that small RNAs produced during interspecific hybridization or polyploidization serve as a buffer against the genomic shock in interspecific hybrids and allopolyploids: Stable inheritance of repeat-associated siRNAs maintains chromatin and genome stability, whereas expression variation of miRNAs leads to changes in gene expression, growth vigor, and adaptation.


Genome Biology | 2009

Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.)

Mingxiong Pang; Andrew W. Woodward; Vikram Agarwal; Xueying Guan; Misook Ha; Xuemei Chen; Barbara A. Triplett; David M. Stelly; Z. Jeffrey Chen

BackgroundCotton fiber development undergoes rapid and dynamic changes in a single cell type, from fiber initiation, elongation, primary and secondary wall biosynthesis, to fiber maturation. Previous studies showed that cotton genes encoding putative MYB transcription factors and phytohormone responsive factors were induced during early stages of ovule and fiber development. Many of these factors are targets of microRNAs (miRNAs) that mediate target gene regulation by mRNA degradation or translational repression.ResultsHere we sequenced and analyzed over 4 million small RNAs derived from fiber and non-fiber tissues in cotton. The 24-nucleotide small interfering RNAs (siRNAs) were more abundant and highly enriched in ovules and fiber-bearing ovules relative to leaves. A total of 31 miRNA families, including 27 conserved, 4 novel miRNA families and a candidate-novel miRNA, were identified in at least one of the cotton tissues examined. Among 32 miRNA precursors representing 19 unique miRNA families identified, 7 were previously reported, and 25 new miRNA precursors were found in this study. Sequencing, miRNA microarray, and small RNA blot analyses showed a trend of repression of miRNAs, including novel miRNAs, during ovule and fiber development, which correlated with upregulation of several target genes tested. Moreover, 223 targets of cotton miRNAs were predicted from the expressed sequence tags derived from cotton tissues, including ovules and fibers. The cotton miRNAs examined triggered cleavage in the predicted sites of the putative cotton targets in ovules and fibers.ConclusionsEnrichment of siRNAs in ovules and fibers suggests active small RNA metabolism and chromatin modifications during fiber development, whereas general repression of miRNAs in fibers correlates with upregulation of a dozen validated miRNA targets encoding transcription and phytohormone response factors, including the genes found to be highly expressed in cotton fibers. Rapid and dynamic changes in siRNAs and miRNAs may contribute to ovule and fiber development in allotetraploid cotton.


Genome Research | 2011

Coordinated histone modifications are associated with gene expression variation within and between species

Misook Ha; Danny W.K. Ng; Wen-Hsiung Li; Z. Jeffrey Chen

Histone modifications regulate gene expression in eukaryotes, but their effects on transcriptomes of a multicellular organism and on transcriptomic divergence between species are poorly understood. Here we present the first nucleotide-resolution maps of histone acetylation, methylation, and core histone in Arabidopsis thaliana and a comprehensive analysis of these and all other available maps with gene expression data in A. thaliana, Arabidopsis arenosa, and allotetraploids. H3K9 acetylation (H3K9ac) and H3K4 trimethylation (H3K4me3) are correlated, and their distribution patterns are associated with Gene Ontology (GO) functional classifications. Highly dense and narrow distributions of these modifications near transcriptional start sites are associated with constitutive expression of genes involved in translation, whereas broad distributions toward coding regions correlate with expression variation of the genes involved in photosynthesis, carbohydrate metabolism, and defense responses. Compared to animal stem cells, dispersed distributions of H3K27me3 without bivalent H3K4me3 and H3K9ac marks correlate with developmentally repressed genes in Arabidopsis. Finally, genes affected by A. thaliana histone deacetylase 1 mutation tend to show high levels of expression variation within and between species. The data suggest that genome-wide coordinated modifications of histone acetylation and methylation provide a general mechanism for gene expression changes within and between species and in allopolyploids.


Genetics | 2008

RNAi of met1 Reduces DNA Methylation and Induces Genome-Specific Changes in Gene Expression and Centromeric Small RNA Accumulation in Arabidopsis Allopolyploids

Meng Chen; Misook Ha; Erika Lackey; Jianlin Wang; Z. Jeffrey Chen

Changes in genome structure and gene expression have been documented in both resynthesized and natural allopolyploids that contain two or more divergent genomes. The underlying mechanisms for rapid and stochastic changes in gene expression are unknown. Arabidopsis suecica is a natural allotetraploid derived from the extant A. thaliana and A. arenosa genomes that are homeologous in the allotetraploid. Here we report that RNAi of met1 reduced DNA methylation and altered the expression of ∼200 genes, many of which encode transposons, predicted proteins, and centromeric and heterochromatic RNAs. Reduced DNA methylation occurred frequently in promoter regions of the upregulated genes, and an En/Spm-like transposon was reactivated in met1-RNAi A. suecica lines. Derepression of transposons, heterochromatic repeats, and centromeric small RNAs was primarily derived from the A. thaliana genome, and A. arenosa homeologous loci were less affected by methylation defects. A high level of A. thaliana centromeric small RNA accumulation was correlated with hypermethylation of A. thaliana centromeres. The greater effects of reduced DNA methylation on transposons and centromeric repeats in A. thaliana than in A. arenosa are consistent with the repression of many genes that are expressed at higher levels in A. thaliana than in A. arenosa in the resynthesized allotetraploids. Moreover, non-CG (CC) methylation in the promoter region of A. thaliana At2g23810 remained in the resynthesized allotetraploids, and the methylation spread within the promoter region in natural A. suecica, leading to silencing of At2g23810. At2g23810 was demethylated and reactivated in met1-RNAi A. suecica lines. We suggest that many A. thaliana genes are transcriptionally repressed in resynthesized allotetraploids, and a subset of A. thaliana loci including transposons and centromeric repeats are heavily methylated and subjected to homeologous genome-specific RNA-mediated DNA methylation in natural allopolyploids.


Bioinformatics | 2013

Predicting the probability of H3K4me3 occupation at a base pair from the genome sequence context

Misook Ha; Soondo Hong; Wen-Hsiung Li

Motivation: Histone modifications regulate chromatin structure and gene expression. Although nucleosome formation is known to be affected by primary DNA sequence composition, no sequence signature has been identified for histone modifications. It is known that dense H3K4me3 nucleosome sites are accompanied by a low density of other nucleosomes and are associated with gene activation. This observation suggests a different sequence composition of H3K4me3 from other nucleosomes. Approach: To understand the relationship between genome sequence and chromatin structure, we studied DNA sequences at histone modification sites in various human cell types. We found sequence specificity for H3K4me3, but not for other histone modifications. Using the sequence specificities of H3 and H3K4me3 nucleosomes, we developed a model that computes the probability of H3K4me3 occupation at each base pair from the genome sequence context. Results: A comparison of our predictions with experimental data suggests a high performance of our method, revealing a strong association between H3K4me3 and specific genomic DNA context. The high probability of H3K4me3 occupation occurs at transcription start and termination sites, exon boundaries and binding sites of transcription regulators involved in chromatin modification activities, including histone acetylases and enhancer- and insulator-associated factors. Thus, the human genome sequence contains signatures for chromatin modifications essential for gene regulation and development. Our method may be applied to find new sequence elements functioning by chromatin modulation. Availability: Software and supplementary data are available at Bioinformatics online. Contact: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Scientific Reports | 2016

DNA context represents transcription regulation of the gene in mouse embryonic stem cells.

Misook Ha; Soondo Hong

Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.


Plant Journal | 2006

Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton

S. Samuel Yang; Foo Cheung; Jinsuk J. Lee; Misook Ha; Ning E. Wei; Sing-Hoi Sze; David M. Stelly; Peggy Thaxton; Barbara A. Triplett; Christopher D. Town; Z. Jeffrey Chen


Proceedings of the National Academy of Sciences of the United States of America | 2009

Duplicate genes increase expression diversity in closely related species and allopolyploids

Misook Ha; Eun-Deok Kim; Z. Jeffrey Chen


Biochimica et Biophysica Acta | 2008

Interspecies regulation of microRNAs and their targets.

Misook Ha; Mingxiong Pang; Vikram Agarwal; Z. Jeffrey Chen

Collaboration


Dive into the Misook Ha's collaboration.

Top Co-Authors

Avatar

Z. Jeffrey Chen

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara A. Triplett

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Erika Lackey

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Eun-Deok Kim

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Mingxiong Pang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Vikram Agarwal

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xuemei Chen

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge