Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mita Das is active.

Publication


Featured researches published by Mita Das.


Journal of Neuroinflammation | 2011

Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade.

W. Michael Zawada; Gregg P Banninger; Jennifer Thornton; Beth Marriott; David Cantu; Angela L. Rachubinski; Mita Das; W. Sue T. Griffin; Sandra C. Jones

BackgroundReactive oxygen species (ROS), superoxide and hydrogen peroxide (H2O2), are necessary for appropriate responses to immune challenges. In the brain, excess superoxide production predicts neuronal cell loss, suggesting that Parkinsons disease (PD) with its wholesale death of dopaminergic neurons in substantia nigra pars compacta (nigra) may be a case in point. Although microglial NADPH oxidase-produced superoxide contributes to dopaminergic neuron death in an MPTP mouse model of PD, this is secondary to an initial die off of such neurons, suggesting that the initial MPTP-induced death of neurons may be via activation of NADPH oxidase in neurons themselves, thus providing an early therapeutic target.MethodsNADPH oxidase subunits were visualized in adult mouse nigra neurons and in N27 rat dopaminergic cells by immunofluorescence. NADPH oxidase subunits in N27 cell cultures were detected by immunoblots and RT-PCR. Superoxide was measured by flow cytometric detection of H2O2-induced carboxy-H2-DCFDA fluorescence. Cells were treated with MPP+ (MPTP metabolite) following siRNA silencing of the Nox2-stabilizing subunit p22phox, or simultaneously with NADPH oxidase pharmacological inhibitors or with losartan to antagonize angiotensin II type 1 receptor-induced NADPH oxidase activation.ResultsNigral dopaminergic neurons in situ expressed three subunits necessary for NADPH oxidase activation, and these as well as several other NADPH oxidase subunits and their encoding mRNAs were detected in unstimulated N27 cells. Overnight MPP+ treatment of N27 cells induced Nox2 protein and superoxide generation, which was counteracted by NADPH oxidase inhibitors, by siRNA silencing of p22phox, or losartan. A two-wave ROS cascade was identified: 1) as a first wave, mitochondrial H2O2 production was first noted at three hours of MPP+ treatment; and 2) as a second wave, H2O2 levels were further increased by 24 hours. This second wave was eliminated by pharmacological inhibitors and a blocker of protein synthesis.ConclusionsA two-wave cascade of ROS production is active in nigral dopaminergic neurons in response to neurotoxicity-induced superoxide. Our findings allow us to conclude that superoxide generated by NADPH oxidase present in nigral neurons contributes to the loss of such neurons in PD. Losartan suppression of nigral-cell superoxide production suggests that angiotensin receptor blockers have potential as PD preventatives.


Advances in Experimental Medicine and Biology | 1999

Hypoxia Induces Cell-Specific Changes in Gene Expression in Vascular Wall Cells: Implications for Pulmonary Hypertension

Kurt R. Stenmark; Maria G. Frid; Raphael A. Nemenoff; Edward C. Dempsey; Mita Das

Mammals respond to reduced oxygen concentrations (hypoxia) in many different ways at the systemic, local, cellular and molecular levels. Within the pulmonary circulation, exposure to chronic hypoxia has been demonstrated to illicit increases in pulmonary artery pressure as well as dramatic structural changes in both large and small vessels. It has become increasingly clear that the response to hypoxia in vivo is differentially regulated at the level of specific cell types within the vessel wall. For instance, in large pulmonary blood vessels there is now convincing evidence to suggest that the medial layer is made up of many different subpopulations of smooth muscle cells. In response to hypoxia there are remarkable differences in the proliferative and matrix producing responses of these cells to the hypoxic environment. Some cell populations proliferate and increase matrix protein synthesis, while in other cell populations no apparent change in the proliferative or differentiation state of the cell takes place. In more peripheral vessels, the predominant proliferative changes in response to hypoxia in the pulmonary circulation occur in the adventitial layer rather than in the medial layer. Here again, specific increases in proliferation and matrix protein synthesis take place. Accumulating evidence suggests that the unique responses exhibited by specific cell types of hypoxia in vivo can be modeled in vitro. We have isolated, in culture, specific medial cell populations which demonstrate significant increases in proliferation in response to hypoxia, and others which exhibit no change or, in fact, a decrease in proliferation under hypoxic conditions. We have also isolated and cloned several unique populations of adventitial fibroblasts. There is good evidence that only certain fibroblast populations are capable of responding to hypoxia with an increase in proliferation. We have begun to elucidate the signaling pathways which are activated in those cell populations that exhibit proliferative responses to hypoxia. We show that hypoxia, in the absence of serum or mitogens, specifically activates select members of the protein kinase C isozyme family, as well as members of the mitogen-activated protein kinase (MAPK) family of proteins. This selective activation appears to take place in response to hypoxia only in those cells exhibiting a proliferative response, and antagonists of this pathway inhibit the response. Thus, there appear to be cells within each organ that demonstrate unique responses to hypoxia. A better understanding of why these cells exist and how they specifically transduce hypoxia-mediated signals will lead to a better understanding of how the changes in the pulmonary circulation take place under conditions of chronic hypoxia.


Cardiovascular Research | 2012

Hypoxia induces unique proliferative response in adventitial fibroblasts by activating PDGFβ receptor-JNK1 signalling

Evgeniy Panzhinskiy; W. Michael Zawada; Kurt R. Stenmark; Mita Das

AIMS Pulmonary hypertension (PH) is a devastating condition for which no disease-modifying therapies exist. PH is recognized as proliferative disease of the pulmonary artery (PA). In the experimental newborn calf model of hypoxia-induced PH, adventitial fibroblasts in the PA wall exhibit a heightened replication index. Because elevated platelet-derived growth factor β receptor (PDGFβ-R) signalling is associated with PH, we tested the hypothesis that the activation of PDGFβ-R contributes to fibroblast proliferation and adventitial remodelling in PH. METHODS AND RESULTS Newborn calves were exposed to either ambient air (P(B) = 640 mmHg) (Neo-C) or high altitude (P(B) = 445 mm Hg) (Neo-PH) for 2 weeks. PDGFβ-R phosphorylation was markedly elevated in PA adventitia of Neo-PH calves as well as in cultured PA fibroblasts isolated from Neo-PH animals. PDGFβ-R activation with PDGF-BB stimulated higher replication in Neo-PH cells compared with that of control fibroblasts. PDGF-BB-induced proliferation was dependent on reactive oxygen species generation and extracellular signal-regulated kinase1/2 activation in both cell populations; however, only Neo-PH cell division via PDGFβ-R activation displayed a unique dependence on c-Jun N-terminal kinase1 (JNK1) stimulation as the blockade of JNK1 with SP600125, a pharmacological antagonist of the JNK pathway, and JNK1-targeted siRNA selectively blunted Neo-PH cell proliferation. CONCLUSIONS Our data strongly suggest that hypoxia-induced modified cells engage the PDGFβ-R-JNK1 axis to confer distinctively heightened proliferation and adventitial remodelling in PH.


Developmental Neuroscience | 2013

Nox4-Generated Superoxide Drives Angiotensin II-Induced Neural Stem Cell Proliferation

Elena Topchiy; Evgeniy Panzhinskiy; W. Sue T. Griffin; Steven W. Barger; Mita Das; W. Michael Zawada

Reactive oxygen species (ROS) have been reported to affect neural stem cell self-renewal and therefore may be important for normal development and may influence neurodegenerative processes when ROS activity is elevated. To determine if increasing production of superoxide, via activation of NADPH oxidase (Nox), increases neural stem cell proliferation, 100 nM angiotensin II (Ang II) - a strong stimulator of Nox - was applied to cultures of a murine neural stem cell line, C17.2. Twelve hours following a single treatment with Ang II, there was a doubling of the number of neural stem cells. This increase in neural stem cell numbers was preceded by a gradual elevation of superoxide levels (detected by dihydroethidium fluorescence) from the steady state at 0, 5, and 30 min and gradually increasing from 1 h to the maximum at 12 h, and returning to baseline at 24 h. Ang II-dependent proliferation was blocked by the antioxidant N-acetyl-L-cysteine. Confocal microscopy revealed the presence of two sources of intracellular ROS in C17.2 cells: (i) mitochondrial and (ii) extramitochondrial; the latter indicative of the involvement of one or more specific isoforms of Nox. Of the Nox family, mRNA expression for one member, Nox4, is abundant in neural stem cell cultures, and Ang II treatment resulted in elevation of the relative levels of Nox4 protein. SiRNA targeting of Nox4 mRNA reduced both the constitutive and Ang II-induced Nox4 protein levels and attenuated Ang II-driven increases in superoxide levels and stem cell proliferation. Our findings are consistent with our hypothesis that Ang II-induced proliferation of neural stem cells occurs via Nox4-generated superoxide, suggesting that an Ang II/Nox4 axis is an important regulator of neural stem cell self-renewal and as such may fine-tune normal, stress- or disease-modifying neurogenesis.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1997

Selected isozymes of PKC contribute to augmented growth of fetal and neonatal bovine PA adventitial fibroblasts

Mita Das; Kurt R. Stenmark; Laura J. Ruff; Edward C. Dempsey

We sought to determine which isozymes of protein kinase C (PKC) contribute to the increased proliferation of immature bovine pulmonary artery (PA) adventitial fibroblasts. Seven were identified in lysates of neonatal PA fibroblasts by Western blot: three Ca2+ dependent (α, βI, and βII) and four Ca2+ independent (δ, ε, ζ, and μ). Four isozymes (γ, η, θ, and ι) were not detected in fibroblasts isolated at any developmental stage. Of the seven detected isozymes, only PKC-α and -βII protein levels were higher in fetal and neonatal cells compared with adult fibroblasts. Their role in the enhanced growth of immature fibroblasts was then evaluated. The isozyme nonselective PKC inhibitor Ro-31-8220 was first compared with GF-109203X, a structural analog of Ro-31-8220 with relative specificity for the Ca2+-dependent isozymes of PKC. GF-109203X selectively inhibited the growth of immature cells and was nearly as potent as Ro-31-8220. Go-6976, a more specific inhibitor of the Ca2+-dependent isozymes, mimicked the antiproliferative effect of GF-109203X. PKC downregulation with 1 μM phorbol 12-myristate 13-acetate had the same selective antiproliferative effect on immature fibroblasts as GF-109203X and Go-6976. The protein levels of PKC-α and -βII, but not of PKC-βI, were completely degraded in response to phorbol 12-myristate 13-acetate pretreatment. These results suggest that PKC-α and -βII are important in the augmented growth of immature bovine PA adventitial fibroblasts.We sought to determine which isozymes of protein kinase C (PKC) contribute to the increased proliferation of immature bovine pulmonary artery (PA) adventitial fibroblasts. Seven were identified in lysates of neonatal PA fibroblasts by Western blot: three Ca2+ dependent (alpha, beta I, and beta II) and four Ca2+ independent (delta, epsilon, zeta, and mu). Four isozymes (gamma, eta, theta, and iota) were not detected in fibroblasts isolated at any developmental stage. Of the seven detected isozymes, only PKC-alpha and -beta II protein levels were higher in fetal and neonatal cells compared with adult fibroblasts. Their role in the enhanced growth of immature fibroblasts was then evaluated. The isozyme nonselective PKC inhibitor Ro-31-8220 was first compared with GF-109203X, a structural analog of Ro-31-8220 with relative specificity for the Ca(2+)-dependent isozymes of PKC. GF-109203X selectively inhibited the growth of immature cells and was nearly as potent as Ro-31-8220. Go-6976, a more specific inhibitor of the Ca(2+)-dependent isozymes, mimicked the antiproliferative effect of GF-109203X. PKC downregulation with 1 microM phorbol 12-myristate 13-acetate had the same selective antiproliferative effect on immature fibroblasts as GF-109203X and Go-6976. The protein levels of PKC-alpha and -beta II, but not of PKC-beta I, were completely degraded in response to phorbol 12-myristate 13-acetate pretreatment. These results suggest that PKC-alpha and -beta II are important in the augmented growth of immature bovine PA adventitial fibroblasts.


Pulmonary circulation | 2012

A process-based review of mouse models of pulmonary hypertension

Mita Das; Joshua P. Fessel; Haiyang Tang; James West

Genetically modified mouse models have unparalleled power to determine the mechanisms behind different processes involved in the molecular and physiologic etiology of various classes of human pulmonary hypertension (PH). Processes known to be involved in PH for which there are extensive mouse models available include the following: (1) Regulation of vascular tone through secreted vasoactive factors; (2) regulation of vascular tone through potassium and calcium channels; (3) regulation of vascular remodeling through alteration in metabolic processes, either through alteration in substrate usage or through circulating factors; (4) spontaneous vascular remodeling either before or after development of elevated pulmonary pressures; and (5) models in which changes in tone and remodeling are primarily driven by inflammation. PH development in mice is of necessity faster and with different physiologic ramifications than found in human disease, and so mice make poor models of natural history of PH. However, transgenic mouse models are a perfect tool for studying the processes involved in pulmonary vascular function and disease, and can effectively be used to test interventions designed against particular molecular pathways and processes involved in disease.


American Journal of Physiology-cell Physiology | 2014

PKCδ/midkine pathway drives hypoxia-induced proliferation and differentiation of human lung epithelial cells.

Hanying Zhang; Miyako Okamoto; Evgeniy Panzhinskiy; W. Michael Zawada; Mita Das

Epithelial cells are key players in the pathobiology of numerous hypoxia-induced lung diseases. The mechanisms mediating such hypoxic responses of epithelial cells are not well characterized. Earlier studies reported that hypoxia stimulates protein kinase C (PKC)δ activation in renal cancer cells and an increase in expression of a heparin-binding growth factor, midkine (MK), in lung alveolar epithelial cells. We reasoned that hypoxia might regulate MK levels via a PKCδ-dependent pathway and hypothesized that PKCδ-driven MK expression is required for hypoxia-induced lung epithelial cell proliferation and differentiation. Replication of human lung epithelial cells (A549) was significantly increased by chronic hypoxia (1% O2) and was dependent on expression of PKCδ. Hypoxia-induced proliferation of epithelial cells was accompanied by translocation of PKCδ from Golgi into the nuclei. Marked attenuation in MK protein levels by rottlerin, a pharmacological antagonist of PKC, and by small interfering RNA-targeting PKCδ, revealed that PKCδ is required for MK expression in both normoxic and hypoxic lung epithelial cells. Sequestering MK secreted into the culture media with a neutralizing antibody reduced hypoxia-induced proliferation demonstrating that an increase in MK release from cells is linked with epithelial cell division under hypoxia. In addition, recombinant MK accelerated transition of hypoxic epithelial cells to cells of mesenchymal phenotype characterized by elongated morphology and increased expression of mesenchymal markers, α-smooth muscle actin, and vimentin. We conclude that PKCδ/MK axis mediates hypoxic proliferation and differentiation of lung epithelial cells. Manipulation of PKCδ and MK activity in epithelial cells might be beneficial for the treatment of hypoxia-mediated lung diseases.


PLOS ONE | 2014

Pathological Changes in Pulmonary Circulation in Carbon Tetrachloride (ccl4)-Induced Cirrhotic Mice

Mita Das; Marjan Boerma; Jessica R. Goree; Elise G. Lavoie; Michel Fausther; Igor Gubrij; Amanda K. Pangle; Larry G. Johnson; Jonathan A. Dranoff

Rationale Lack of an experimental model of portopulmonary hypertension (POPH) has been a major obstacle in understanding of pathophysiological mechanisms underlying the disease. Objective We investigated the effects of CCl4-mediated cirrhosis on the pulmonary vasculature, as an initial step towards an improved understanding of POPH. Methods And Results Male C57BL/6 mice received intraperitoneal injection of either sterile olive oil or CCl4 3 times/week for 12 weeks. Cirrhosis and portal hypertension were confirmed by evidence of bridging fibrosis and nodule formation in CCl4-treated liver determined by trichrome/picrosirius red staining and an increase in spleen weight/body weight ratio, respectively. Staining for the oxidative stress marker, 4-hydroxynonenal (4-HNE), was strong in the liver but was absent in the lung, suggesting that CCl4 did not directly induce oxidative injury in the lung. Pulmonary acceleration time (PAT) and the ratio of PAT/pulmonary ejection time (PET) measured by echocardiography were significantly decreased in cirrhotic mice. Increase in right ventricle (RV) weight/body weight as well as in the weight ratio of RV/(left ventricle + septum) further demonstrated the presence of pathological changes in the pulmonary circulation in these mice. Histological examination revealed that lungs of cirrhotic mice have excessive accumulation of perivascular collagen and thickening of the media of the pulmonary artery. Conclusion Collectively, our data demonstrate that chronic CCl4 treatment induces pathological changes in pulmonary circulation in cirrhotic mice. We propose that this murine cirrhotic model provides an exceptional tool for future studies of the molecular mechanisms mediating pulmonary vascular diseases associated with cirrhosis and for evaluation of novel therapeutic interventions.


Physiology | 2006

Role of the Adventitia in Pulmonary Vascular Remodeling

Kurt R. Stenmark; Neil Davie; Maria G. Frid; Evgenia V. Gerasimovskaya; Mita Das


American Journal of Respiratory Cell and Molecular Biology | 2000

Chronic hypoxia induces exaggerated growth responses in pulmonary artery adventitial fibroblasts: potential contribution of specific protein kinase c isozymes.

Mita Das; Edward C. Dempsey; David M. Bouchey; Mary E. Reyland; Kurt R. Stenmark

Collaboration


Dive into the Mita Das's collaboration.

Top Co-Authors

Avatar

Kurt R. Stenmark

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

W. Michael Zawada

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristin M Shields

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Angela L. Rachubinski

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Beth Marriott

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

David Cantu

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Elise G. Lavoie

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge