Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitali Mukerji is active.

Publication


Featured researches published by Mitali Mukerji.


Science | 2009

Mapping Human Genetic Diversity in Asia

Mahmood Ameen Abdulla; Ikhlak Ahmed; Anunchai Assawamakin; Jong Bhak; Samir K. Brahmachari; Gayvelline C. Calacal; Amit Chaurasia; Chien-Hsiun Chen; Jieming Chen; Yuan-Tsong Chen; Jiayou Chu; Eva Maria Cutiongco-de la Paz; Maria Corazon A. De Ungria; Frederick C. Delfin; Juli Edo; Suthat Fuchareon; Ho Ghang; Takashi Gojobori; Junsong Han; Sheng Feng Ho; Boon Peng Hoh; Wei Huang; Hidetoshi Inoko; Pankaj Jha; Timothy A. Jinam; Li Jin; Jongsun Jung; Daoroong Kangwanpong; Jatupol Kampuansai; Giulia C. Kennedy

Patterns of Early Migration In order to gain insight into various migrations that must have happened during movement of early humans into Asia and the subsequent populating of the largest continent on Earth, the HUGO Pan-Asian SNP Consortium (p. 1541) analyzed genetic variation in almost 2000 individuals representing 73 Asian and two non-Asian populations. The results suggest that there may have been a single major migration of people into Asia and a subsequent south-to-north migration across the continent. While most populations from the same linguistic group tend to cluster together in terms of relatedness, several do not, clustering instead with their geographic neighbors, suggesting either substantial recent mixing among the populations or language replacement. Furthermore, data from indigenous Taiwanese populations appear to be inconsistent with the idea of a Taiwan homeland for Austronesian populations. Genetic analyses of Asian peoples suggest that the continent was populated through a single migration event. Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations.


Human Genetics | 2000

Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation.

Quasar Saleem; Shweta Choudhry; Mitali Mukerji; Leena Bashyam; Mv Padma; Ambar Chakravarthy; Mool Chand Maheshwari; Satish Jain; Samir K. Brahmachari

Abstract. Expansion of CTG/CAG trinucleotide repeats has been shown to cause a number of autosomal dominant cerebellar ataxias (ADCA) such as SCA1, SCA2, SCA3/MJD, SCA6, SCA7, SCA8 and DRPLA. There is a wide variation in the clinical phenotype and prevalence of these ataxias in different populations. An analysis of ataxias in 42 Indian families indicates that SCA2 is the most frequent amongst all the ADCAs we have studied. In the SCA2 families, together with an intergenerational increase in repeat size, a horizontal increase with the birth order of the offspring was also observed, indicating an important role for parental age in repeat instability. This was strengthened by the detection of a pair of dizygotic twins with expanded alleles showing the same repeat number. Haplotype analysis indicates the presence of a common founder chromosome for the expanded allele in the Indian population. Polymorphism of CAG repeats in 135 normal individuals at the SCA loci studied showed similarity to the Caucasian population but was significantly different from the Japanese population.


Bioinformatics | 2004

Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition

Deepak Grover; Mitali Mukerji; Pankaj Bhatnagar; Krishnamoorthy Kannan; Samir K. Brahmachari

MOTIVATION Transposon-derived Alu repeats are exclusively associated with primate genomes. They have gained considerable importance in the recent times with evidence of their involvement in various aspects of gene regulation, e.g. alternative splicing, nucleosome positioning, CpG methylation, binding sites for transcription factors and hormone receptors, etc. The objective of this study is to investigate the factors that influence the distribution of Alu repeat elements in the human genome. Such analysis is expected to yield insights into various aspects of gene regulation in primates. RESULTS Analysis of Alu repeat distribution for the human genome build 32 (released in January 2003) reveals that they occupy nearly one-tenth portion of the sequenced regions. Huge variations in Alu frequencies were seen across the genome with chromosome 19 being the most and chromosome Y being the least Alu dense chromosomes. The highlights of the analysis are as follows: (1). three-fourth of the total genes in the genome are associated with Alus. (2). Alu density is higher in genes as compared with intergenic regions in all the chromosomes except 19 and 22. (3). Alu density in human genome is highly correlated with GC content, gene density and intron density with GC content being major deterministic factor compared with other two. (4). Alu densities were correlated more with gene density than intron density indicating the insertion of Alus in untranslated regions of exons.


Human Genetics | 2005

The Indian Genome Variation database (IGVdb): A project overview

Samir K. Brahmachari; Lalji Singh; Abhay Sharma; Mitali Mukerji; Kunal Ray; Susanta Roychoudhury; Giriraj R. Chandak; Kumarasamy Thangaraj; Saman Habib; Devendra Parmar; Partha P. Majumder; Shantanu Sengupta; Dwaipayan Bharadwaj; Debasis Dash; Srikanta Kumar Rath; R. Shankar; Jagmohan Singh; Komal Virdi; Samira Bahl; V. R. Rao; Swapnil Sinha; Ashok K. Singh; Amit Mitra; Shrawan K. Mishra; B. R K Shukla; Qadar Pasha; Souvik Maiti; Amitabh Sharma; Jitender Kumar; Aarif Ahsan

Indian population, comprising of more than a billion people, consists of 4693 communities with several thousands of endogamous groups, 325 functioning languages and 25 scripts. To address the questions related to ethnic diversity, migrations, founder populations, predisposition to complex disorders or pharmacogenomics, one needs to understand the diversity and relatedness at the genetic level in such a diverse population. In this backdrop, six constituent laboratories of the Council of Scientific and Industrial Research (CSIR), with funding from the Government of India, initiated a network program on predictive medicine using repeats and single nucleotide polymorphisms. The Indian Genome Variation (IGV) consortium aims to provide data on validated SNPs and repeats, both novel and reported, along with gene duplications, in over a thousand genes, in 15,000 individuals drawn from Indian subpopulations. These genes have been selected on the basis of their relevance as functional and positional candidates in many common diseases including genes relevant to pharmacogenomics. This is the first large-scale comprehensive study of the structure of the Indian population with wide-reaching implications. A comprehensive platform for Indian Genome Variation (IGV) data management, analysis and creation of IGVdb portal has also been developed. The samples are being collected following ethical guidelines of Indian Council of Medical Research (ICMR) and Department of Biotechnology (DBT), India. This paper reveals the structure of the IGV project highlighting its various aspects like genesis, objectives, strategies for selection of genes, identification of the Indian subpopulations, collection of samples and discovery and validation of genetic markers, data analysis and monitoring as well as the project’s data release policy.Indian population, comprising of more than a billion people, consists of 4693 communities with several thousands of endogamous groups, 325 functioning languages and 25 scripts. To address the questions related to ethnic diversity, migrations, founder populations, predisposition to complex disorders or pharmacogenomics, one needs to understand the diversity and relatedness at the genetic level in such a diverse population. In this backdrop, six constituent laboratories of the Council of Scientific and Industrial Research (CSIR), with funding from the Government of India, initiated a network program on predictive medicine using repeats and single nucleotide polymorphisms. The Indian Genome Variation (IGV) consortium aims to provide data on validated SNPs and repeats, both novel and reported, along with gene duplications, in over a thousand genes, in 15,000 individuals drawn from Indian subpopulations. These genes have been selected on the basis of their relevance as functional and positional candidates in many common diseases including genes relevant to pharmacogenomics. This is the first large-scale comprehensive study of the structure of the Indian population with wide-reaching implications. A comprehensive platform for Indian Genome Variation (IGV) data management, analysis and creation of IGVdb portal has also been developed. The samples are being collected following ethical guidelines of Indian Council of Medical Research (ICMR) and Department of Biotechnology (DBT), India. This paper reveals the structure of the IGV project highlighting its various aspects like genesis, objectives, strategies for selection of genes, identification of the Indian subpopulations, collection of samples and discovery and validation of genetic markers, data analysis and monitoring as well as the project’s data release policy.


Journal of Translational Medicine | 2008

Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda.

Bhavana Prasher; Sapna Negi; Shilpi Aggarwal; Amit Kumar Mandal; Tav Pritesh Sethi; S.R. Deshmukh; Sudha G Purohit; Shantanu Sengupta; Sangeeta Khanna; Farhan Mohammad; Gaurav Garg; Samir K. Brahmachari; Mitali Mukerji

BackgroundAyurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individuals basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakriti s) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates.MethodsNormal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types.ResultsIndividuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A significant enrichment of housekeeping, disease related and hub genes were observed in these extreme constitution types.ConclusionAyurveda based method of phenotypic classification of extreme constitutional types allows us to uncover genes that may contribute to system level differences in normal individuals which could lead to differential disease predisposition. This is a first attempt towards unraveling the clinical phenotyping principle of a traditional system of medicine in terms of modern biology. An integration of Ayurveda with genomics holds potential and promise for future predictive medicine.


BMC Evolutionary Biology | 2004

Evolution and distribution of RNA polymerase II regulatory sites from RNA polymerase III dependant mobile Alu elements

Ravi Shankar; Deepak Grover; Samir K. Brahmachari; Mitali Mukerji

BackgroundThe primate-specific Alu elements, which originated 65 million years ago, exist in over a million copies in the human genome. These elements have been involved in genome shuffling and various diseases not only through retrotransposition but also through large scale Alu-Alu mediated recombination. Only a few subfamilies of Alus are currently retropositionally active and show insertion/deletion polymorphisms with associated phenotypes. Retroposition occurs by means of RNA intermediates synthesised by a RNA polymerase III promoter residing in the A-Box and B-Box in these elements. Alus have also been shown to harbour a number of transcription factor binding sites, as well as hormone responsive elements. The distribution of Alus has been shown to be non-random in the human genome and these elements are increasingly being implicated in diverse functions such as transcription, translation, response to stress, nucleosome positioning and imprinting.ResultsWe conducted a retrospective analysis of putative functional sites, such as the RNA pol III promoter elements, pol II regulatory elements like hormone responsive elements and ligand-activated receptor binding sites, in Alus of various evolutionary ages. We observe a progressive loss of the RNA pol III transcriptional potential with concomitant accumulation of RNA pol II regulatory sites. We also observe a significant over-representation of Alus harboring these sites in promoter regions of signaling and metabolism genes of chromosome 22, when compared to genes of information pathway components, structural and transport proteins. This difference is not so significant between functional categories in the intronic regions of the same genes.ConclusionsOur study clearly suggests that Alu elements, through retrotransposition, could distribute functional and regulatable promoter elements, which in the course of subsequent selection might be stabilized in the genome. Exaptation of regulatory elements in the preexisting genes through Alus could thus have contributed to evolution of novel regulatory networks in the primate genomes. With such a wide spectrum of regulatory sites present in Alus, it also becomes imperative to screen for variations in these sites in candidate genes, which are otherwise repeat-masked in studies pertaining to identification of predisposition markers.


Biological Psychiatry | 2005

MLC1 gene is associated with schizophrenia and bipolar disorder in Southern India.

Ranjana Verma; Mitali Mukerji; Deepak Grover; Chandrika B-Rao; Swapan K Das; Shobana Kubendran; Sanjeev Jain; Samir K. Brahmachari

BACKGROUND Chromosome 22q13 has shown linkage with schizophrenia (SCZ) and bipolar affective disorder (BPAD). A missense mutation in MLC1 (putative cation-channel gene on 22q13) co-segregating with periodic catatonic schizophrenia has been reported. We have investigated the relationship of MLC1 with SCZ and BPAD in Southern India. METHODS All exons and flanking intronic sequences of MLC1 were screened for novel variations. Case-control (216 BPAD, 193 SCZ, 116 control subjects) and family-based analyses (113 BPAD, 107 SCZ families) were performed to evaluate association of MLC1 with these disorders. RESULTS We found 33 MLC1 sequence variations, including three novel mutations: Val210Ile, Leu308Gln, and Arg328His in six BPAD cases and Val210Ile in one control individual. Minor allele of a common variation, ss16339182 (in approximately 6 Kb Linkage-Disequilibrium [LD]-block) was associated with BPAD in case-control (p = .03) and family-based analyses (transmitted/nontransmitted [T/NT]-44/20; p = .003). Association was observed for rs2235349 and rs2076137 with SCZ and ss16339163 with BPAD in case-control study. Using Block 2 haplotype tagging single nucleotide polymorphisms (htSNPs), GC haplotype revealed association (p = .02) and excess transmission (p = .002) with BPAD. CONCLUSIONS Association of MLC1 with SCZ and BPAD suggests involvement of a common pathway. Rare missense mutations and common variants associated with BPAD favors hypothesis about likely involvement of both rare and common polymorphisms in etiology of this complex disorder.


Annals of Human Genetics | 2005

Evidence of a common founder for SCA12 in the Indian population.

S. Bahl; K. Virdi; Uma Mittal; M.P. Sachdeva; A.K. Kalla; S. E. Holmes; E. O'Hearn; Russell L. Margolis; S. Jain; Achal Srivastava; Mitali Mukerji

Spinocerebellar ataxia type 12 (SCA12) is an autosomal dominant cerebellar ataxia associated with the expansion of an unstable CAG repeat in the 5′ region of the PPP2R2B gene on chromosome 5q31–5q32. We found that it accounts for ∼16% (20/124) of all the autosomal dominant ataxia cases diagnosed in AIIMS, a major tertiary referral centre in North India. The length of the expanded allele in this population ranges from 51–69 CAG triplets. Interestingly, all the affected families belong to an endogamous population, which originated in the state of Haryana, India. We identified four novel SNPs and a dinucleotide marker spanning ∼137 kb downstream of CAG repeat in the PPP2R2B gene. Analysis of 20 Indian SCA12 families and ethnically matched normal unrelated individuals revealed one haplotype to be significantly associated with the affected alleles (P= 0.000), clearly indicating the presence of a common founder for SCA12 in the Indian population. This haplotype was not shared by the American pedigree with SCA12. Therefore, the SCA12 expansion appears to have originated at least twice.


Infection, Genetics and Evolution | 2011

Differential serum cytokine levels are associated with cytokine gene polymorphisms in north Indians with active pulmonary tuberculosis.

Abhimanyu; Irengbam Rocky Mangangcha; Pankaj Jha; Komal Arora; Mitali Mukerji; Jayant Nagesh Banavaliker; Vani Brahmachari; Mridula Bose

Globally only 5-10% of people encountering Mycobacterium tuberculosis have a lifetime risk of active disease indicating a strong host genetic bias towards development of tuberculosis. In the current study we investigated genotype variants pertaining to five cytokine genes namely IFNG, TNFA, IL4, IL10 and IL12 in the north Indian population with active pulmonary tuberculosis (APTB) and correlated the serum cytokine levels with the corresponding genotypes. Twenty five single nucleotide polymorphisms (SNPs) including six loci examined for the first time in tuberculosis were selected for genotyping in 108 patients with APTB from north India and 48 healthy regional controls (HC). Applying exclusion criteria 12 SNPs passed all the filters and were analysed further. The serum cytokine concentrations were measured by ELISA. Compared to HC mean serum IFN-γ, IL-12, IL-4, and IL-10 levels were higher in APTB (p = 0.3661, p = 0.0186, p = 0.003, p = 0.7, respectively). In contrast the mean serum TNF-α level was higher in HC (p = 0.007). Comparison of genotypes and serum levels of the corresponding cytokine genes reveal that though IFN-γ and IL-4 levels were higher in APTB the genotype variants showed no difference between HC and APTB. In contrast the genotypes of the selected rsIDs in the TNFA, IL12 and IL10 genes showed significant association with the varying serum levels of corresponding cytokines. The variant of the TNFA gene at rs3093662, the IL12 gene at rs3213094 and rs3212220 and the IL10 gene at rs3024498 did show a strong indication to be of relevance to the immunity to tuberculosis. To our knowledge this is the first report from this region relating genotypes and serum cytokine levels in north Indian population.


American Journal of Respiratory Cell and Molecular Biology | 2012

Hypoxia Response in Asthma Differential Modulation on Inflammation and Epithelial Injury

Tanveer Ahmad; Manish Kumar; Ulaganathan Mabalirajan; Bijay Pattnaik; Shilpi Aggarwal; Ranjana Singh; Suchita Singh; Mitali Mukerji; Balaram Ghosh; Anurag A. Agrawal

Oxygen-sensing prolyl-hydroxylase (PHD)-2 negatively regulates hypoxia-inducible factor (HIF)1-α and suppresses the hypoxic response. Hypoxia signaling is thought to be proinflammatory but also attenuates cellular injury and apoptosis. Although increased hypoxic response has been noted in asthma, its functional relevance is unknown. The objectives of this study were to dissect the mechanisms and role of the hypoxic response in asthma pathophysiology. Experimental studies were conducted in mice using acute and chronic allergic models of asthma. The hypoxic response in allergically inflamed lungs was modulated by using pharmacologic PHD inhibitors (ethyl-3-4-dihydroxybenzoic acid [DHB], 1-10 mg/kg) or siRNA-mediated genetic knockdowns. Increased hypoxia response led to exacerbation of the asthma phenotype, with HIF-1α knockdown being beneficial. Chronically inflamed lungs from mice treated with 10 mg/kg DHB showed diffuse up-regulation of the hypoxia response, severe airway remodeling, and inflammation. Fatal asphyxiation during methacholine challenge was noted. However, bronchial epithelium restricted up-regulation of the hypoxia response seen with low-dose DHB (1 mg/kg) reduced epithelial injury and attenuated the asthmatic phenotype. Up-regulation of the hypoxia response was associated with increased expression of CX3CR1, a lymphocyte survival factor, and increased inflammatory cell infiltrate. This study shows that an exaggerated hypoxia response may contribute to airway inflammation, remodeling, and the development of asthma. However, the hypoxia response may also be protective of epithelial apoptosis at lower levels, and the net effects of modulating the hypoxia response may vary based on the context.

Collaboration


Dive into the Mitali Mukerji's collaboration.

Top Co-Authors

Avatar

Achal Srivastava

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Mohammed Faruq

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Samir K. Brahmachari

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Debasis Dash

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Bhavana Prasher

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Rajesh Pandey

Institute of Genomics and Integrative Biology

View shared research outputs
Top Co-Authors

Avatar

Uma Mittal

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Pankaj Jha

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Ankita Narang

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Deepak Grover

Council of Scientific and Industrial Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge