Mitchel L. Villereal
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mitchel L. Villereal.
Journal of Biological Chemistry | 2005
Tatiana K. Zagranichnaya; Xiaoyan Wu; Mitchel L. Villereal
Endogenously expressed canonical transient receptor potential (TRPC) homologs were investigated for their role in forming store-operated, 1-oleoyl-2-acetyl-sn-glycerol-stimulated, or carbachol (CCh)-stimulated calcium entry pathways in HEK-293 cells. Measurement of thapsigargin-stimulated Ba2+ entry indicated that the individual suppression of TRPC1, TRPC3, or TRPC7 protein levels, by small interfering RNA (siRNA) techniques, dramatically inhibited (52–68%) store-operated calcium entry (SOCE), whereas suppression of TRPC4 or TRPC6 had no effect. Combined suppression of TRPC1-TRPC3, TRPC1-TRPC7, TRPC3-TRPC7, or TRPC1-TRPC3-TRPC7 gave only slightly more inhibition of SOCE (74–78%) than seen with suppression of TRPC1 alone (68%), suggesting that these three TRPC homologs work in tandem to mediate a large component of SOCE. Evidence from co-immunoprecipitation experiments indicates that a TRPC1-TRPC3-TRPC7 complex, predicted from siRNA results, does exist. The suppression of either TRPC3 or TRPC7, but not TRPC1, induced a high Ba2+ leak flux that was inhibited by 2-APB and SKF96365, suggesting that the influx is via leaky store-operated channels. The high Ba2+ leak flux is eliminated by co-suppression of TRPC1-TRPC3 or TRPC1-TRPC7. For 1-oleoyl-2-acetyl-sn-glycerol-stimulated cells, siRNA data indicate that TRPC1 plays no role in mediating Ba2+ entry, which appears to be mediated by the participation of TRPC3, TRPC4, TRPC6, and TRPC7. CCh-stimulated Ba2+ entry, on the other hand, could be inhibited by suppression of any of the five endogenously expressed TRPC homologs, with the degree of inhibition being consistent with CCh stimulation of both store-operated and receptor-operated channels. In summary, endogenous TRPC1, TRPC3, and TRPC7 participate in forming heteromeric store-operated channels, whereas TRPC3 and TRPC7 can also participate in forming heteromeric receptor-operated channels.
Journal of Biological Chemistry | 2004
Xiaoyan Wu; Tatiana K. Zagranichnaya; Grzegorz T. Gurda; Eva M. Eves; Mitchel L. Villereal
Store-operated calcium entry (SOCE) and TRPC protein expression were investigated in the rat-derived hippocampal H19-7 cell line. Thapsigargin-stimulated Ba2+ entry and the expression of TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, and TRPC7 mRNA and protein were observed in proliferating H19-7 cells. When cells were placed under differentiating conditions, a change in TRPC homolog expression profile occurred. The expression of TRPC1 and TRPC3 mRNA and protein dramatically increased, while the expression of TRPC4 and TRPC7 mRNA and protein dramatically decreased; in parallel a 3.4-fold increase in the level of thapsigargin-stimulated Ba2+ entry was observed and found to be inhibited by 2-aminoethoxydiphenylborane. The selective suppression of TRPC protein levels by small interfering RNA (siRNA) approaches indicated that TRPC1 and TRPC3 are involved in mediating SOCE in proliferating H19-7 cells. Although TRPC4 and TRPC7 are expressed at much higher levels than TRPC1 and TRPC3 in proliferating cells, they do not appear to mediate SOCE. The co-expression of siRNA specific for TRPC1 and TRPC3 in proliferating cells inhibited approximately the same amount of SOCE as observed with expression of either siRNA alone, suggesting that TRPC1 and TRPC3 work in tandem to mediate SOCE. Under differentiating conditions, co-expression of siRNA for TRPC1 and TRPC3 blocked the normal 3.4-fold increase in SOCE and in turn blocked the differentiation of H19-7 cells. This study suggests that placing H19-7 cells under differentiating conditions significantly alters TRPC gene expression and increases the level of SOCE and that this increase in SOCE is necessary for cell differentiation.
Cell | 1983
Nancy E. Owen; Mitchel L. Villereal
The effect of Lys-bradykinin on net Na+ influx in serum-deprived cultured human fibroblasts (HSWP cells) was measured. It was found that Lys-bradykinin stimulates net Na+ influx with a K1/2 of 1 nM. When Lys-bradykinin was combined with epidermal growth factor, vasopressin and insulin, the net Na+ influx stimulated was comparable with that measured in response to 10% serum. The above combination of growth factors also was found to stimulate DNA synthesis to 92% of the serum-stimulated levels in HSWP cells and to support cell growth over a period of 6 days. In addition, it was observed that the Na+ influx stimulated by Lys-bradykinin or by the combination of four growth factors was completely inhibited by the amiloride analog benzamil. Thus Lys-bradykinin presumably stimulates the same Na+ transport system as is stimulated by serum. Finally, the present results suggest that an increase in Na+ influx always accompanies DNA synthesis in HSWP cells. On the basis of these observations, it can be hypothesized that Na+ influx is a necessary event to stimulate DNA synthesis.
Biochemical and Biophysical Research Communications | 1984
Leslie L. Mix; Robert J. Dinerstein; Mitchel L. Villereal
Intracellular free Ca+2 concentration was measured in cultured human fibroblasts (HSWP) utilizing the Ca+2-sensitive fluorescent probe quin2. The addition of peptide growth factors to serum-deprived HSWP cells induced an immediate rise in intracellular Ca+2 concentration. This mitogen-induced rise in Ca+2 concentration could be blocked by the addition of the intracellular Ca+2 antagonist TMB-8. Addition of the phospholipase activator, melittin, to cells in the absence of growth factors also caused a dramatic rise in intracellular Ca+2 concentration which was blocked by TMB-8.
Life Sciences | 1986
Lucia M. Vincetini; Mitchel L. Villereal
The signals that induce a cell to divide are usually external and in the form of a binding of growth factors. We focussed our attention in defining the sequence of events which occurs after the binding of the mitogens to their surface receptors. One of the early membrane events stimulated by growth factors is a Na+ flux coupled to a H+ efflux that is typically inhibited by amiloride. The importance of this event and of the consequent cytoplasmic alkalinization for the cell proliferation is discussed. Recent data indicate that mitogens increase intracellular Ca++ levels and activate protein kinase C by inducing the hydrolysis of membrane phosphoinositides. A role for Ca++ and protein kinase C in activating Na+/H+ A role for Ca++ and protein kinase C in activating Na+/H+ exchange system is discussed. Finally a model is presented that illustrates the first membrane events stimulated by the growth factors. The model reveals an intimate interconnections between phosphoinositide metabolism, cytosolic Ca++ rise, protein kinase C and cytoplasmic alkalinization.
Biochemical and Biophysical Research Communications | 1984
Lucia M. Vicentini; Mitchel L. Villereal
The mitogens serum, vasopressin and bradykinin stimulate a significant rise in the inositol phosphate content of cultured human fibroblasts within 10 seconds, while serum- and bradykinin-stimulated arachidonic acid release does not occur until after 30 seconds. The release of inositol phosphates is not secondary to a rise in Ca activity since the Ca ionophore ionomycin does not stimulate release of inositol phosphates. Moreover, we show that phospholipase C in human fibroblasts is activated by these mitogens at resting Ca levels since TMB-8, which blocks the mitogen-induced rise in Ca activity, does not affect the serum-stimulated accumulation of inositol phosphates.
Journal of Biological Chemistry | 1997
Gyorgy Babnigg; Susan R. Bowersox; Mitchel L. Villereal
In many cell types, G protein-coupled receptors stimulate a transient Ca2+ release from internal stores followed by a sustained, capacitative Ca2+ entry, which is mediated by store-operated channels (SOCs). Although it is clear that SOCs are activated by depletion of internal Ca2+stores, the mechanism for this process is not well understood. Previously, we have reported that inhibitors of tyrosine kinase activity block the bradykinin- and thapsigargin-stimulated Ca2+ entry in fibroblasts, suggesting that a tyrosine kinase activity may be involved in relaying the message from the empty internal Ca2+ stores to the plasma membrane Ca2+ channel (Lee, K.-M., Toscas, K., and Villereal, M. L. (1993) J. Biol. Chem. 268, 9945–9948). We also have demonstrated that bradykinin activates the nonreceptor tyrosine kinase c-src (Lee, K.-M., and Villereal, M. L. (1996) Am. J. Physiol. 270, C1430–C1437). We investigated whether c-src plays a role in the regulation of SOCs by monitoring capacitative Ca2+ entry in 3T3-like embryonic fibroblast lines derived from either wild type orsrc −/src −(Src−) transgenic mice. We report that Ca2+entry, following store depletion by either bradykinin or thapsigargin, is dramatically lower in Src− fibroblasts than in wild type fibroblasts. The level of capacitative Ca2+ entry in Src− cells is restored to nearly normal levels by transfecting Src− cells with chicken c-src. These data suggest that c-src may play a major role in the regulation of SOCs.
Biochemical and Biophysical Research Communications | 1982
Nancy E. Owen; Mitchel L. Villereal
Abstract The effects of the intracellular Ca+2 antagonist TMB-8 on the amiloride-sensitive Na+ influx pathway in human fibroblasts was investigated. It was found that TMB-8 inhibits serum- or growth factor-stimulated Na+ influx in a dose dependent fashion with a Ki value = 15 μM. A23187-stimulated Na+ influx on the other hand, was not inhibited by TMB-8. Furthermore, serum-stimulated Na+ influx could also be blocked by the calmodulin antagonist W-13. These results suggest that serum- or growth factor-stimulated Na+ influx is associated with an elevation of cytosolic free Ca+2 levels, which then combine with calmodulin to activate the amiloride-sensitive Na+ influx pathway.
Reviews of Physiology Biochemistry and Pharmacology | 1992
Mitchel L. Villereal; Ken L. Byron
There is a substantial amount of information which has been obtained concerning the effects of growth factors on [Ca2+]i in proliferating cells. A number of different mitogens are known to induce elevations in [Ca2+]i and some characterization of the Ca2+ response to different classes of mitogens has been obtained. In addition, much is known about whether the Ca2+ response to a particular growth factor occurs as the result of an influx of external Ca2+ or a mobilization of internal Ca2+ stores. In addition, a considerable amount of information is available on the mechanism by which the Ins(1,4,5)P3-sensitive internal Ca2+ store takes up and releases Ca2+. However, there is still a large deficiency in our information concerning other Ca2+ stores in proliferating cells as well as in our knowledge of the mechanisms for regulating Ca2+ entry pathways. Much more data addressing these issues exists for other types of agonist-stimulated cells, and we have discussed much of it in this review article. While the wealth of data in nonproliferating cells provides some indications of what mechanisms might be involved in the growth factor-induced changes in [Ca2+]i, it is clear that much work must be done in proliferating cells to fully understand how external factors such as growth factors control [Ca2+]i. In addition, much work remains to be done in identifying the mechanisms for the internal control of [Ca2+]i as cells move through the cell cycle and in identifying the role that these changes in [Ca2+]i may play throughout the cell cycle.
Molecular and Cellular Biology | 2011
William Zeiger; Daisuke Ito; Carol Swetlik; Masatsugu Oh-hora; Mitchel L. Villereal; Gopal Thinakaran
ABSTRACT The regulation of cellular Ca2+ homeostasis is essential for innumerable physiological and pathological processes. Stanniocalcin 1, a secreted glycoprotein hormone originally described in fish, is a well-established endocrine regulator of gill Ca2+ uptake during hypercalcemia. While there are two mammalian Stanniocalcin homologs (STC1 and STC2), their precise molecular functions remain unknown. Notably, STC2 is a prosurvival component of the unfolded protein response. Here, we demonstrate a cell-intrinsic role for STC2 in the regulation of store-operated Ca2+ entry (SOCE). Fibroblasts cultured from Stc2 knockout mice accumulate higher levels of cytosolic Ca2+ following endoplasmic reticulum (ER) Ca2+ store depletion, specifically due to an increase in extracellular Ca2+ influx through store-operated Ca2+ channels (SOC). The knockdown of STC2 expression in a hippocampal cell line also potentiates SOCE, and the overexpression of STC2 attenuates SOCE. Moreover, STC2 interacts with the ER Ca2+ sensor STIM1, which activates SOCs following ER store depletion. These results define a novel molecular function for STC2 as a negative modulator of SOCE and provide the first direct evidence for the regulation of Ca2+ homeostasis by mammalian STC2. Furthermore, our findings implicate the modulation of SOCE through STC2 expression as one of the prosurvival measures of the unfolded protein response.
Collaboration
Dive into the Mitchel L. Villereal's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs